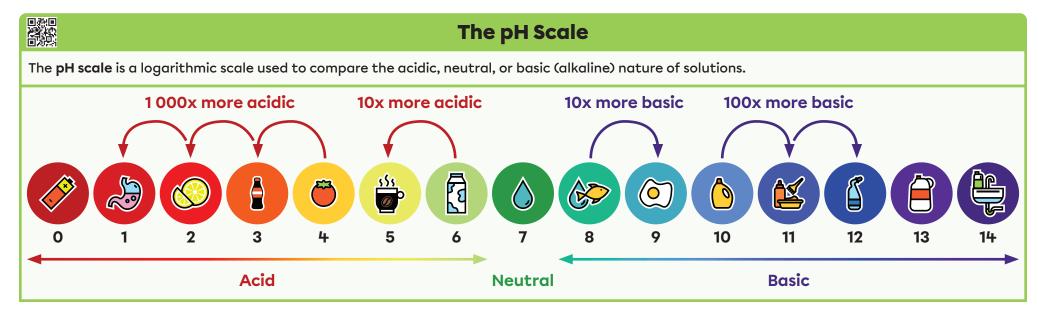
Material World Review - Science and Technology (ST)


This summary provides a quick overview of the Material World concepts that will be assessed during the ST ministry exam. To explore a concept in more detail, scan its QR code.

Concentration

Concentration is the ratio between the amount of solute and the amount of solution. Example: 25.0 g of solute is dissolved in 800 mL of solution.

What is the concentration of the solution?

Density (g/L)	In % (m/V)	In ppm
$m = 25.0 \text{ g}$ $C = \frac{m}{V}$ $V = 800 \text{ mL} \times \frac{1 \text{ L}}{1\ 000 \text{ mL}} = 0.800 \text{ L}$ $C = ? \text{ (g/L)}$ $C \approx 31.3 \text{ g/L}$	$m = 25.0 \text{ g}$ $V = 800 \text{ mL}$ $C = \frac{m}{V} \times 100$ $C = \frac{25.0 \text{ g}}{800 \text{ mL}} \times 100$ $C \approx 3.13 \% \text{ (m/V)}$	$m = 25.0 \text{ g}$ $C = \frac{m}{V} \times 1\ 000\ 000$ $C = ?\ \%\ (\text{m/V})$ $C = \frac{25.0 \text{ g}}{800 \text{ mL}} \times 1\ 000\ 000$ $C = 31\ 250 \text{ ppm} \approx 3.13 \times 10^4 \text{ppm}$

Electrolytic Dissociation				
An electrolyte is a substance that allows <u>current to flow</u> through	Type of Electrolyte	Acid	Base Salt	
an aqueous solution.	General Chemical Formula	(H) + Non-metal	Metal + (OH)	Metal + Non-metal
Electrolytic dissociation is the separation of an electrolyte into a cation and an anion.	lons in Solution	A proton (H ⁺) and an anion	A cation and a hydroxide (OH ⁻)	A cation and an anion
	pH in Solution	Below 7	Above 7	Variable
	Examples	HCI, CH ₃ COOH, H ₂ SO ₄	Na OH , Ca (OH) ₂	MgCl ₂ , KNO ₃ , NaF

Groups in the Periodic Table of Elements				
+1 +1	The charge of ions +4 -4 -2	Group	Characteristics	
-1 1 +2 1 H 2 2 Li Be	formed by elements in groups I A to VII A +3 -3 -1 18	Alkali Metals	Soft metalsVery reactiveGood electrical conductors	
3 Na Mg 3 3 111 B 5 111 S 11 S 1 S 11 S 11 S 1 S 11 S 11 S 1 S 1 S 11 S 1 S	1	Alkaline-Earth Metals	 Soft metals Reactive Good electrical conductors Found in the Earth's crust 	
6 CS BO Lactorial Statement of Calculation Sta	Hf	Halogens	Very reactiveDisinfectantsReact with metals to form salts	
#period	Colum Possocytem Michaelphiam Protestation Strangelum Standardum Stratum Dypersalem Hollmann Hollmann Hollmann Museum Delbum Phulum Thruthum Phulum	Noble Gases	 Non-metals Very stable Emit light when an electric current is passed through them 	

aprof.ca/s1592EN alloprof

Rutherford-Bohr Atomic Model

- Atomic number = Number of p⁺ in the nucleus = Number of e⁻ to be distributed
- Period number = Number of electron shells
- Group number as a Roman numeral = e⁻ valence number
- 1st shell: max. 2 e
- 2nd and other shells: max. 8 e⁻

Atomic number Period: 3 Example: magnesium atom (Mg) Valence e Valence e Nucleus Electron shell

lons

An ion is an atom that has lost or gained electrons to take on the same electronic configuration as a noble (or inert) gas and become more stable.

Cation : posit	ively charged ion	Sulphur atom (S)	Sulphur ion (S ²⁻)	Argon ion (Ar)
Anion : negat	ively charged ion		2-	
2 electrons to (S ²⁻), obtainin	ulphur atom (S) gains o form a sulphur ion g the same electronic n as argon (Ar).	16p*	16p*	18p*
Legend	Electron gained			

ploprof

Chemical Reactions

Oxidation is a reaction in which an element of one of the reactants loses electrons. This can happen in the presence of oxygen.

Example: Formation of iron oxide (rust)

$$4 \text{ Fe}_{(s)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ Fe}_2 \text{O}_{3(s)}$$

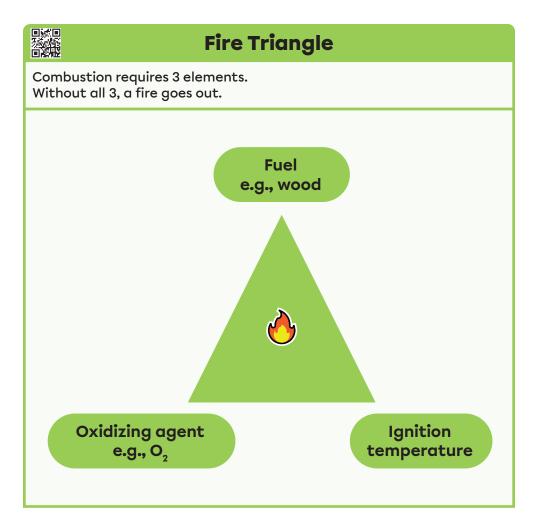
Combustion is an oxidation process that releases energy.

Example: Propane combustion

$$C_{3}H_{8(a)} + 5O_{2(a)} \rightarrow 3CO_{2(a)} + 4H_{2}O_{()} + Energy$$

Cellular respiration is the <u>slow combustion</u> of glucose in animal and plant cells.

$$C_6H_{12}O_{6(s)} + 6 O_{2(q)} \rightarrow 6 CO_{2(q)} + 6 H_2O_{(l)} + Energy$$


Photosynthesis is a glucose synthesis reaction that takes place in plant cells.

$$6 CO_{2(g)} + 6 H_2O_{(l)} + Energy \rightarrow C_6H_{12}O_{6(s)} + 6 O_{2(g)}$$

Acid-base neutralization is the reaction of an acid with a base to produce a salt and water.

Example: Neutralization of HCl by NaOH

$$\mathsf{HCl}_{(aq)} + \mathsf{NaOH}_{(aq)} \rightarrow \mathsf{NaCl}_{(aq)} + \mathsf{H}_2\mathsf{O}_{(l)}$$

Law of Conservation of Matter

Matter is neither created nor destroyed, but transformed. The mass of the reactants is equal to the mass of the products.

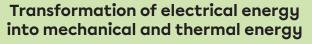
	Mass of reactan	ts	=	Mass of products
C ₂ H _{4(g)}	+	$H_{\scriptscriptstyle 2(g)}$	\rightarrow	C ₂ H _{6(g)}
28. 06 g	+	2.02 g	=	30.08 g
	30.08 g		=	30.08 g

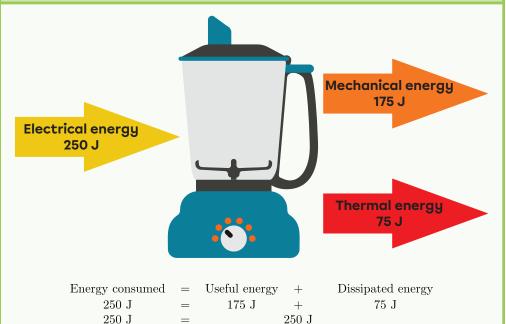
Balancing a Chemical Equation

Balancing a chemical equation means balancing the number of atoms in the reactants and products in keeping with the Law of Conservation of Matter.

	N ₂	+	3 H ₂	\rightarrow	2 NH ₃
N	2		0		2 × 1
н	0		6 3 × 2	2	6 2×3

Number of N atoms		
Reactants Products		
2	2	\Diamond
Number of H atoms		
Reactants	Products	
6	6	\Diamond




Law of Conservation of Energy

Energy cannot be created nor destroyed. It can only be transferred or transformed.

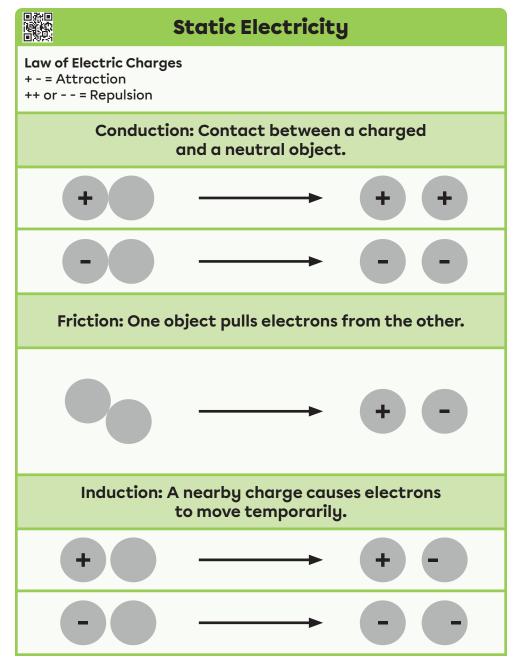
Thermal energy transfer from coffee to hand

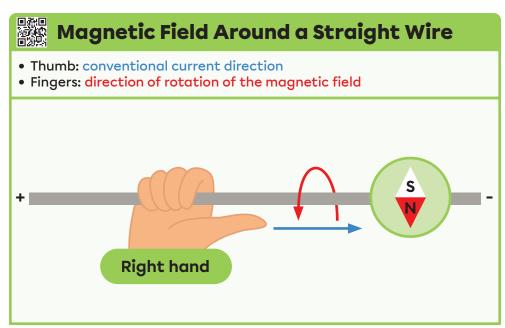
Energy Efficiency

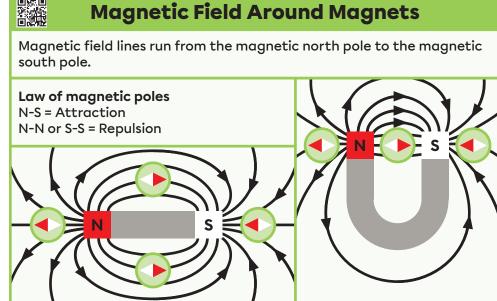
Example: A toaster consumes 270 000 J of electrical energy and transforms it into 197 100 J of useful thermal energy. What is the energy efficiency?

Energy efficiency =
$$?\%$$

$$E_{consumed} = 270\ 000\ J$$


$$E_{useful} = 197 \ 100 \ J$$


$$Energy \ efficiency = \frac{E_{useful}}{E_{consumed}} \times 100$$


Energy efficiency =
$$\frac{197\ 100\ J}{270\ 000\ J} \times 100$$

Energy efficiency
$$\approx 73~\%$$

Ohm's Law (V=RI)

Example: A toaster with a resistance of 12 Ω carries a current of 10 000 mA. What is the potential difference, or voltage, of the toaster's outlets?

$$R = 12~\Omega$$

$$I = 10~000~\mathrm{mA} \times \frac{1~\mathrm{A}}{1~000~\mathrm{mA}} = 10~\mathrm{A}$$

$$V = ~?~\mathrm{V}$$

$$V = RI$$

$$V = 12 \Omega \times 10 \text{ A}$$
$$V = 120 \text{ V}$$

Electrical Power (P=VI)

Example: What is the electrical power of the toaster in the previous example?

$$V = 120 \text{ V}$$
$$I = 10 \text{ A}$$
$$P = ? \text{ W}$$

$$P = VI$$

$$P = 120 \text{ V} \times 10 \text{ A}$$

 $P = 1 \text{ 200 W}$

Electrical Energy Consumed (E=P∆t)

Example: The toaster runs for 3 min and 45 sec.

How much electrical energy does it consume?

Joules	(J)
---------------	------------

$$P = 1 \ 200 \ \mathrm{W}$$

$$\Delta t = \left(3 \ \mathrm{min} \ \times \ \frac{60 \ \mathrm{s}}{1 \ \mathrm{min}}\right) \ + \ 45 \ \mathrm{s} = 225 \ \mathrm{s}$$

$$E = ? \ \mathrm{J}$$

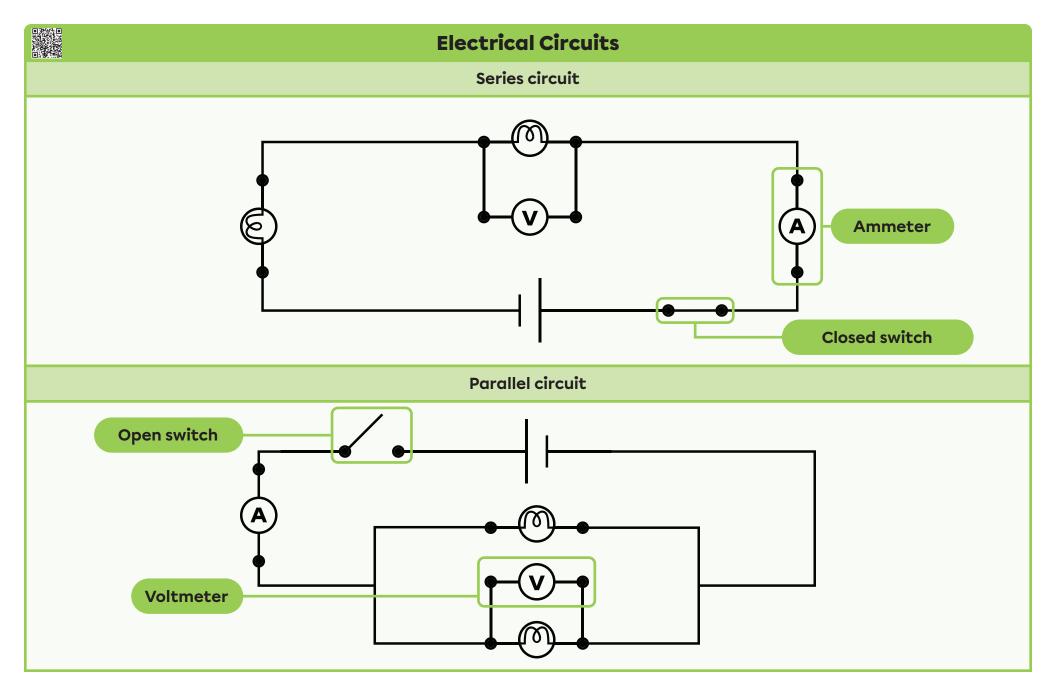
$$E = P\Delta t$$

$$E = 1 \ 200 \ \mathrm{W} \ \times \ 225 \ \mathrm{s}$$

$$E = 270 \ 000 \ \mathrm{J}$$

$$P = 1 \ 200 \ \text{W} \times \frac{1 \ \text{kW}}{1 \ 000 \ \text{W}} = 1.2 \ \text{kW}$$

$$\Delta t = \left(3 \ \text{min} \times \frac{1 \ \text{h}}{60 \ \text{min}}\right) + \left(45 \ \text{sec} \times \frac{1 \ \text{h}}{3 \ 600 \ \text{s}}\right) = 0.0625 \ \text{h}$$


$$E = ? \ \text{kWh}$$

$$E = P\Delta t$$

$$E = 1.2 \ \text{kW} \times 0.0625 \ \text{h}$$

$$E = 0.075 \ \text{kWh}$$

alloprof