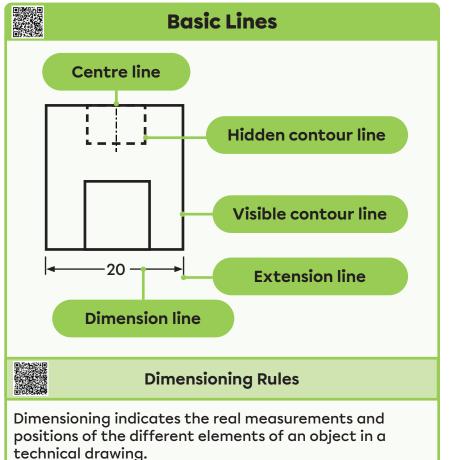
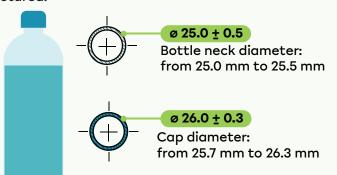

Technological World Review – Applied Science and Technology (AST)


This summary provides a quick overview of all the Technological World concepts that will be assessed during the AST ministry exam. To explore a concept in more detail, scan its QR code.

Caution!

When performing a technological analysis of a technical object, it's important to use the terms specific to technology.

aprof.ca/s1593EN Qlloprof



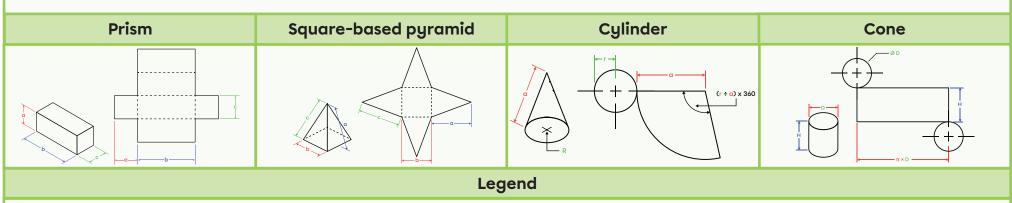
Dimensional Tolerance

Functional Dimensioning

The dimensional tolerance indicates the **acceptable deviation** between a part's specified dimensions and the real dimensions of the part after it's manufactured.

Provides the dimensions relating to the **operation** of a technical object.

Example: A clearance of between 0.2 mm and 1.8 mm is given so that the neck fits into a 26.3 mm diameter cap.


- ø 25.5: will always work
- Ø 24.3: may not always work

 The bottle neck may be able to fit into the cap, but the clearance is too high.
- ø 26.3: may not always work There is no clearance.
- Ø 26.4: will not work
 It cannot be inserted into the cap.

Developments

Developments (or nets) are flat representations of the surfaces of a solid that will be manufactured by cambering (bending).

Contour line: — Bend line: - - - -

Material Protection

Certain treatments slow down or prevent the degradation of materials.

- Galvanization (zinc plating)
- Application of paint, varnish or oil-based rust inhibitor
- Addition of pigments capable of reflecting UV rays
- Antioxidant additives
- Waterproof treatment

Types of Deformation

Deformation can be either invisible or visible, depending on the nature of the material and the magnitude of the applied stress.

- Elastic deformation (temporary): The material returns to its original shape once constraint is no longer applied. Example: Compressing a spring
- Plastic (or permanent) deformation: The material does not return to its original shape once the constraint is no longer applied. Example: Compressing an empty soft drink can
- Fracture: The constraint exceeds the strength threshold of the material.

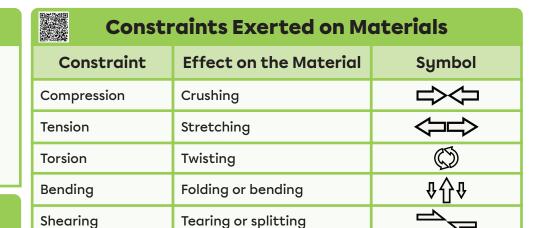
Example: Snapping a dry piece of spaghetti in half

Mechanical Properties of Materials

Hardness: resistant to penetration and scratching

Elasticity: deforms, then returns to its original shape

Resilience: resists shocks


Fragility: breaks easily

Stiffness: resists deformation

Metals

Ductility: stretches without breaking and retains its new shape

Malleability: can be flattened or bent without breaking and retains its new shape

Types of Materials

Ceramics

- Hardness
- Stiffness
- Fragility

- Chemical neutrality
- Heat resistance
- Corrosion resistance

Plastics: Thermoplastics

- Resilience
- Elasticity
- Chemical neutrality

- Corrosion resistance
- Remouldable if heated

Plastics: Thermosets

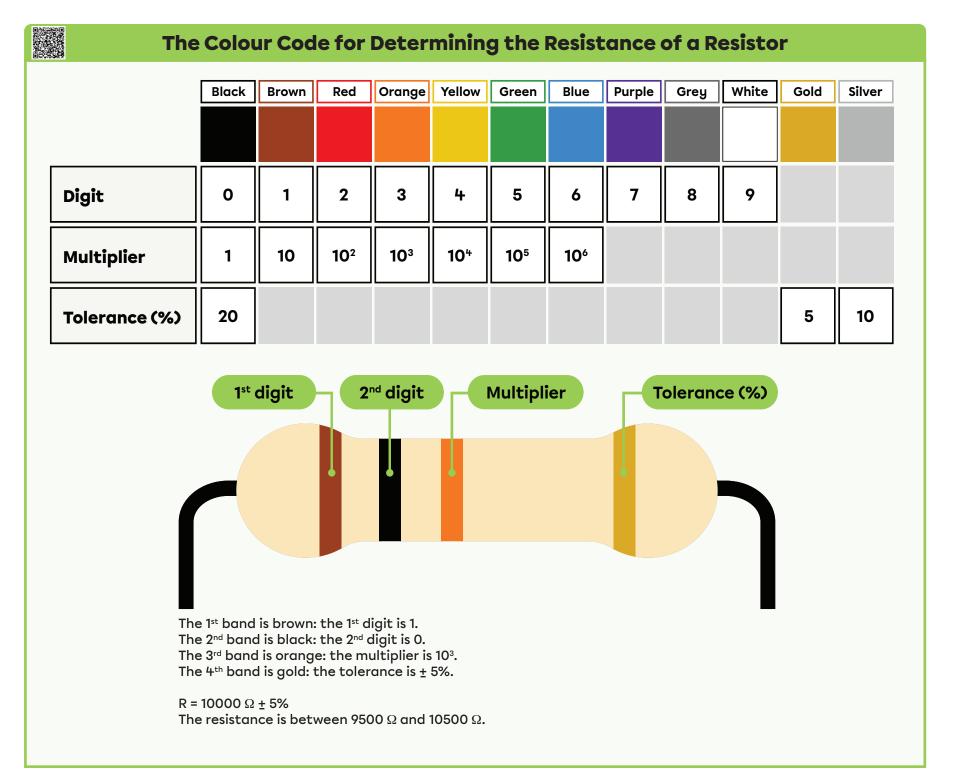
- Hardness
- Stiffness
- Resilience
- Corrosion resistance
- Heat resistance
- Maintains its stiffness when heated (Cannot be remoulded!)

Non-Mechanical Properties of Materials

- Electrical conductivity
- Thermal conductivity
- Lightness (low density)

- Chemical neutrality
- Heat resistance
- Corrosion resistance

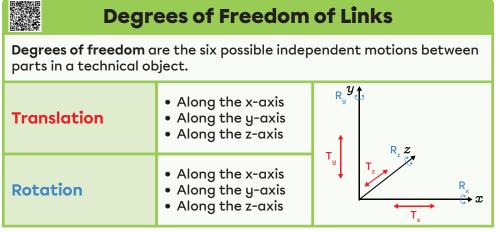
Technological World Review - Applied Science and Technology (AST) - Cont.

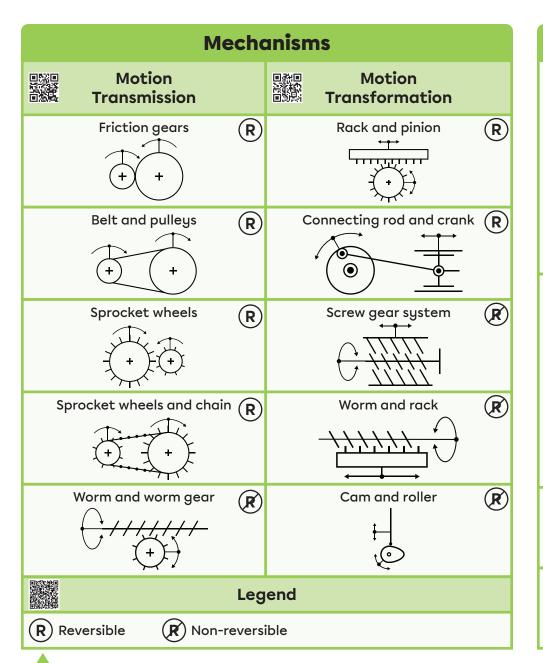

Electrical Functions		
Function	Example and Symbol	
Power supply	Battery –	⊣
	Electrical outlet •	⊕•
Conduction	Conducting wire —	
Insulation	Plastic sheath	
Protection	Fuse ←	
	Circuit breaker	
	Light bulb (Electrical → Radiant)	—
Energy transformation	Heating element (Electrical → Thermal)	─
	Motor (Electrical → Mechanical)	M →
	Examples of unipolar switc	hes
	Rocker switch	∕ •
Control	Double-throw switch ——	
	Push-button switch	<u></u> —
	Magnetic switch •	— •

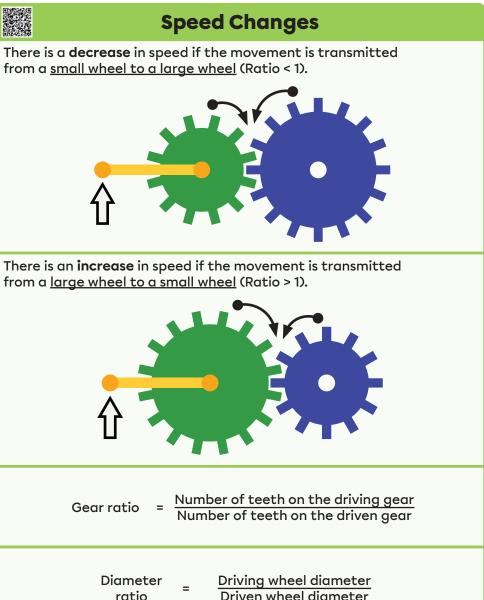
A unipolar switch has only 1 contact that closes the switch

M	Machining Techniques		
Technique	Description		
Cambering	Permanently bending a material to give it a curved shape		
Bending	Permanently bending a material to give it an angled shape		
Threading	Engraving threads around a cylindrical part		
Tapping	Engraving threads inside a previously drilled material		
Drilling	Making a round hole in a material		

1	Drilling	Making a round hole in a material	
	Other Electrical Components and Their Functions		
697 G		mulates electrical charges, then pidly releasing them.	
E3000E	A diode allows cu	rrent to flow in one direction only.	• * > - •
E 2000 C C C C C C C C C C C C C C C C C	A light-emitting	diode (LED) is a diode that emits light.	• + 1/4-
0000		d closes an electrical circuit in response to ther electrical circuit nearby.	• • • • • • • • • • • • • • • • • • •

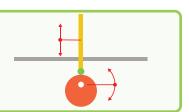

A **resistor** reduces the flow of current in an electric circuit.




Guiding Control	
Types of Guiding Control	Symbol
Rotational	
Helical	#
Translational	

No.	Linking	
A link always has 4 of 8 possible characteristics . Here are 2 examples.		
Two-Piece Wooden Clothespin		
	IndirectFlexibleRemovablePartial	
Screwdriver Handle and Shaft		
	DirectRigidPermanentComplete	

Adhesion and Friction Two surfaces in contact can slide over each other. There is adhesion if there is no movement. There is friction if there is movement.



Caution!

A cam is said to be **eccentric** when its rotational axis is off-centre.

The further the axis is from the centre, the greater the amplitude of the follower's movement.

