Content code
m1114
Slug (identifier)
the-difference-of-functions
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
domain
functions
difference
difference of functions
defined
result
subtracting functions
graph of a difference of functions
graph of a subtraction of functions
Content
Contenu
Links
Corps

Operations on functions are performed the same way operations on numbers are performed. Therefore, the difference of functions can be found.

Content
Corps

Given two real functions |f| and |g,| the difference between them can be defined as follows. ||(f-g)(x)=f(x)-g(x)||

Corps
  • The domain of the difference function corresponds to the intersection of the domains of the functions in question. If there is a denominator, the restrictions on it must be excluded.

Title (level 2)
The Algebraic Representation of the Difference of Functions
Title slug (identifier)
algebraic
Contenu
Title (level 3)
Example 1
Title slug (identifier)
example-1
Corps

Function |c| is defined by |c(x)=x^{2}-1| and function |d| is defined by |d(x)=2x+3.| The difference in the functions will result in the following. ||\begin{align}(c-d)(x) &= c(x)-d(x) \\ &=(x^{2}-1)-(2x+3) \\ &= x^{2}-1-2x-3 \\ &=x^{2}-2x-4 \end{align}||

The domain of function |c| corresponds to |\mathbb{R}.| The domain of function |d| also corresponds to |\mathbb{R}.| The domain of the function given by |c-d| will correspond to the intersection of the two initial domains. Therefore, this function’s domain will be |\mathbb{R}.|

Title (level 3)
Example 2
Title slug (identifier)
example-2
Corps

Function |p| is defined by |p(x)=4\sin\dfrac{\pi}{10}(x)| and function |q| is defined by |q(x)=\dfrac{x}{5}.| The difference in the functions will result in the following. ||\begin{align} (p-q)(x) &= p(x)-q(x) \\ &= 4\sin\dfrac{\pi}{10}(x)-\dfrac{x}{5} \end{align}||

The domain of function |p| corresponds to |\mathbb{R}| and the domain of function |q| corresponds to |\mathbb{R}.| The domain of the function given by |p-q| will correspond to the intersection of the two initial domains. Therefore, this function’s domain will be |\mathbb{R}.|

Title (level 3)
Example 3
Title slug (identifier)
example-3
Corps

Function |f| is defined by |f(x)=\dfrac{x-3}{x-4}| and function |g| is defined by |g(x)=\dfrac{x+2}{x^2-16}.| The difference in the functions will result in the following. ||\begin{align} (f-g)(x) &= f(x)-g(x) \\ &= \dfrac{x-3}{x-4}-\dfrac{x+2}{x^2-16} \\ &= \dfrac{x-3}{x-4}-\dfrac{x+2}{(x-4)(x+4)} \\ &= \dfrac{x-3}{x-4}\times \dfrac{x+4}{x+4} -\dfrac{x+2}{(x-4)(x+4)} \\ &= \dfrac{(x-3)(x+4)}{(x-4)(x+4)} -\dfrac{x+2}{(x-4)(x+4)} \\ &= \dfrac{x^2+x-12}{(x-4)(x+4)} -\dfrac{x+2}{(x-4)(x+4)} \\ &= \dfrac{x^2+x-12-(x+2)}{(x-4)(x+4)} \\ &= \dfrac{x^2+x-12-x-2}{(x-4)(x+4)} \\ &= \dfrac{x^2-14}{x^2-16} \end{align}||

The domain of function |f| is |\mathbb{R} \backslash \lbrace 4 \rbrace| and the domain of function |g| is |\mathbb{R} \backslash \lbrace -4,4 \rbrace.| Therefore, the domain of the resulting function is |\mathbb{R} \backslash \lbrace 4 \rbrace \cap \mathbb{R} \backslash \lbrace -4,4 \rbrace = \mathbb{R} \backslash \lbrace -4, 4 \rbrace.|

Title (level 2)
The Graphical Representation of the Difference of Functions
Title slug (identifier)
graph
Contenu
Corps

To find the difference between two functions in a graph, subtract the range of the first function by the range of the second function.

To produce the graph, make a table of values or use the peculiarities of the resulting function.

Title (level 3)
Back to Example 1
Title slug (identifier)
back-to-example-1
Corps
  • In the first example, the table of values of the functions |c(x)=x^{2}-1,| |d(x)=2x+3| and |c-d,| would result in the following.

|x|

|c(x)|

|d(x)|

|(c-d)(x)|

|0|

|-1|

|3|

|-4|

|1|

|0|

|5|

|-5|

|2|

|3|

|7|

|-4|

|3|

|8|

|9|

|-1|

|4|

|15|

|11|

|4|

  • Since the resultant function is a quadratic function, the associated formulas can be used to find the vertex and the zeros.

Vertex:

|(c-d)(x)=x^{2}-2x-4|

|h=\dfrac{-b}{2a}=\dfrac{-(-2)}{2\times 1}=1|

|\begin{align} k &= (c-d)(h) \\ &= (c-d)(1) \\ &= (1)^{2}-2(1)-4 \\ &=-5 \end{align}|

So |(h,k)= (1,-5).|

Zeros:

|\begin{align} x_{\{1,2\}} &= \dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a} \\ &=\frac{-(-2)\pm\sqrt{(-2)^{2}-4(1)(-4)}}{2(1)} \end{align}|

We find |(-1.24, 0)| and |(3.24, 0).|

The following graph is obtained.

Image
Graph
Contenu
Corps

Pour valider ta compréhension des opérations sur les fonctions de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Remove audio playback
No
Printable tool
Off