Content code
m1155
Slug (identifier)
inverse-of-the-logarithmic-function
Parent content
Grades
Secondary IV
Secondary V
Topic
Mathematics
Content
Contenu
Corps

Here are two ways to find the inverse of a logarithmic function.

Links
Title (level 2)
Determine the Inverse of a Logarithmic Function With a Graph
Title slug (identifier)
graphically
Contenu
Corps

To determine the inverse of a logarithmic function with a graph, proceed as follows.

Content
Corps

Graph the inverse of the following logarithmic function. ||y = -6\log_5 (x+4)+3||

  1. Graph the logarithmic function in order to graph the inverse

Image
Function
Corps
  1. Draw the line |y = x|

Image
Function
Corps
  1. Reflect the starting logarithmic function in terms of the line |y = x|
Image
Function
Corps

Therefore, we obtain the inverse of the starting logarithmic function.

Title (level 2)
Determine the Inverse of a Logarithmic Function Algebraically
Title slug (identifier)
algebraically
Contenu
Corps

To algebraically determine the inverse of a logarithmic function, proceed as follows.

Surtitle
Règle
Content
Corps
  1. Swap the variables |x| and |y| in the initial rule.

  2. Isolate the expression containing the logarithm.

  3. Switch to exponential form to isolate |y.|

Content
Corps

Determine the inverse rule of the following logarithmic function algebraically.
||y = -4\log_7 (3(x-6))+8||

  1. Swap the |x| and |y| variables in the initial rule

    ||x = -4\log_7 (3(y-6))+8||

  2. Isolate the expression containing the logarithm

    ||\begin{align} x &= -4\log_7 (3(y-6))+8 \\ x - 8 &= -4\log_7 (3(y-6)) \\ \dfrac{\text{-}1}{4}(x - 8) &= log_7 (3(y-6)) \end{align}||

  3. Switch to the exponential form to isolate |y|

    ||\begin{align} 7^{\dfrac{\text{-}1}{4}(x-8)} &= 3(y - 6) \\ \dfrac{7^{\frac{\text{-}1}{4}(x-8)}}{3} &= y - 6\\ \dfrac{7^{\frac{\text{-}1}{4}(x-8)}}{3}+6 &= y \\
    {\dfrac{1} {3}}\normalsize(7)^{\dfrac{\text{-}1}{4}(x-8)}+6&= y \end{align}|| Therefore, | y^{-1} = \dfrac{1}{3}(7)^{\dfrac{\text{-}1}{4}(x-8)}+6| is the rule of the inverse.

Corps

It is important to note that the inverse of logarithmic functions are exponential functions.

Content
Corps

When carefully observing the starting function and its inverse, note the following:

  • The parameter |h| becomes the parameter |k| of the inverse;

  • The parameter |k| becomes the parameter |h| of the inverse;

  • The inverse’s base |c| is the same as the starting function’s base;

  • The inverse’s parameter |a| is the reciprocal of the starting function’s parameter |b;|

  • The inverse’ s parameter |b| is the reciprocal of the starting function’s parameter |a.|

||y = \color{red}{a}\log_\color{magenta}{c} \big(\color{purple}{b}(x-\color{blue}{h})\big)+\color{green}{k}\ \ \Leftrightarrow \ \ y^{-1}=\color{purple}{\dfrac{1}{b}}(\color{magenta}{c})^{\color{red}{\dfrac{1}{a}}(x-\color{green}{k})}+\color{blue}{h}||

Remove audio playback
No