Content code
m1009
Slug (identifier)
mathematical-formulas-secondary
Grades
Secondary I
Secondary II
Secondary III
Secondary IV
Secondary V
Topic
Mathematics
Tags
zeros
functions
identities
measurements
trigonometric
formulas
percentage
statistics
probability
geometry
analytic
circle
area
perimeter
vectors
conics
geometric transformations
correlation
Content
Title (level 2)
Arithmetic and Algebra
Title slug (identifier)
arithmetic-algebra
Contenu
Title (level 3)
Expressing a Number as a Percentage (Sec. 1-2)
Title slug (identifier)
number-percentage
Corps

​||\dfrac{\text{numerator}}{\text{denominator}}\times100||

||\dfrac{\text{numerator}}{\text{denominator}}=\dfrac{\text{number sought}}{100}||

Title (level 3)
The Properties of Operations (Sec. 1-2)
Title slug (identifier)
properties-operations
Corps

Property

Addition

Multiplication

  1. Commutativity

||a+b=b+a||

||a\times b=b\times a||

  1. Associativity

||(a+b)+c=a+(b+c)||

||(a\times b)\times c=a\times(b\times c)||

  1. The neutral (identity) element

||a+0=0+a=a||

||a\times1=1\times a=a||

  1. The absorbing (annihilating) element

 

||a\times0=0\times a=0||

  1. Opposite / Reciprocal

||a+-a=-a+a=0||

||a\times\dfrac{1}{a}=1||

  1. The distributive nature of multiplication

||a\times(b\pm c)=a\times b\pm a\times c||

Title (level 3)
Real Functions (Secondary 3 - 5)
Title slug (identifier)
real-functions
Corps

Functions

Basic rule

Transformed rule

0 Degree

||y=b||

 

1st degree

||y=x||

Functional form

Symmetrical form

General form

||y=ax+b|||a|: rate of change (slope)

|b|: y-intercept||a=\dfrac{y_2-y_1}{x_2-x_1}||

||\dfrac{x}{a}+\dfrac{y}{b}=1|||a|: x-intercept

|b|: y-intercept

||Ax+By+C=0||

|\Rightarrow| Symmetrical||\begin{align}a_s&=\dfrac{-b_f}{a_f}\\b_s&=b_f\end{align}||

|\Rightarrow| Functional||\begin{align}a_f&=\dfrac{-b_s}{a_s}\\b_f&=b_s\end{align}||

|\Rightarrow| Functional||\begin{align}a_f&=\dfrac{-A}{B}\\b_f&=\dfrac{-C}{B}\end{align}||

|\Rightarrow| General

Find the common denominator and bring everything to the same side of the equation.

|\Rightarrow| General

Find the common denominator and bring everything to the same side of the equation.

|\Rightarrow| Symmetrical||\begin{align}a_s&=\dfrac{-C}{A}\\\\b_s&=\dfrac{-C}{B}\end{align}||

2nd degree

||y=x^2||

General form

Standard form

Factored form

||y=ax^2+bx+c||

||\begin{align}y&=\text{a}\big(b(x-h)\big)^2+k\\y&=\text{a }b^2(x-h)^2+k\\y&=a(x-h)^2+k\end{align}||

Two zeros||y=a(x-z_1)(x-z_2)||One unique zero||y=a(x-z_1)^2||

Number of zeros||\sqrt{b^2-4ac}||

Number of zeros||\sqrt{\dfrac{-k}{a}}||

Number of zeros

Directly accessible from the equation (see the box above).

Note: if there are no zeros, it's not possible to use this form.

Value of the zeros||\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}||

Value of the zeros||h\pm\sqrt{\dfrac{-k}{a}}||

Value of the zeros

|z_1| and |z_2|

Absolute value

||y=\vert x\vert||

Standard form

||\begin{align}y&=\text{a }\vert b(x-h)\vert+k\\y&=\text{a }\vert b\vert\times\vert x-h\vert+k\\y&=a\ \vert x-h\vert+k\end{align}||

Square root

||y=\sqrt{x}||

Standard form

||\begin{align}y&=\text{a}\sqrt{b(x-h)}+k\\[3pt]y&=\text{a}\sqrt b\sqrt{\pm(x-h)}+k\\[3pt]y&=a\sqrt{\pm(x-h)}+k\end{align}||

Step (greatest integer) function ||y=[x]|| Standard form
||y=a\big[b\,(x-h)\big]+k||
Title (level 3)
Exponential and Logarithmic Functions (Sec. 4 CST-TS and Sec. 5 TS-SN)
Title slug (identifier)
exponential-functions
Corps

Functions

Basic rule

Transformed rule

Definitions and laws

Exponential

||f(x)=c^x||

||f(x)=a(c)^{b(x-h)}+k||

||\begin{align}a^0&=1\\[3pt]a^1&=a\\[3pt]a^{-m}&=\dfrac{1}{a^m}\\[3pt]a^{^{\frac{\large{m}}{\large{n}}}}&=\sqrt[\large{n}]{a^m}\\[3pt]a^m=a^n&\!\!\ \Leftrightarrow\ m=n\\[3pt]a^ma^n&=a^{m+n}\\[3pt]\dfrac{a^m}{a^n}&=a^{m-n}\\[3pt](ab)^m&=a^mb^m\\[3pt](a^m)^{^{\Large{n}}}&=a^{mn}\\[3pt]\left(\dfrac{a}{b}\right)^m&=\dfrac{a^m}{b^m}\\[3pt]\sqrt[\large{n}]{ab}&=\sqrt[\large{n}]{a}\ \sqrt[\large{n}]{b}\\[3pt]\sqrt[\large{n}]{\dfrac{a}{b}}&=\dfrac{\sqrt[\large{n}]{a}}{\sqrt[\large{n}]{b}}\end{align}||

Logarithmic

||f(x)=\log_cx||

||f(x)=a\log_c(b(x-h))+k||

||\begin{align}\log_c1&=0\\[3pt]\log_cc&=1\\[3pt]c^{\log_{\large{c}}m}&=m\\[3pt]\log_cc^m&=m\\[3pt]\log_cm=\log_cn\ &\Leftrightarrow\ m=n\\[3pt]\log_c(mn)&=\log_cm+\log_cn\\[3pt]\log_c\left(\dfrac{m}{n}\right)&=\log_cm-\log_cn\\[3pt]\log_c(m^n)&=n\log_cm\\[3pt]\log_cm&=\dfrac{\log_sm}{\log_sc}\end{align}||

One is the inverse of the other||x=c^y\ \Longleftrightarrow\ y=\log_cx||

Title (level 3)
Trigonometric Functions (Sec. 5 TS - SN)
Title slug (identifier)
trigonometric-functions
Corps

Functions

Basic rule

Transformed rule

Special characteristics

Sine

||f(x)=\sin x||

||f(x)=a\sin\big(b(x-h)\big)+k||

||\begin{align}\vert a\vert&=\dfrac{\max-\min}{2}\\[3pt]\vert b \vert&=\dfrac{2\pi}{\text{period}}\\[3pt]\text{Range}f&=[k-a,k+a]\end{align}||Zeros: An infinite number of the form |(x_1+nP)| and |(x_2+nP)| where |x_1| and |x_2| are consecutive zeros, |n\in\mathbb{Z}| and |P| is the period.

Cosine

||f(x)=\cos x||

||f(x)=a\cos\big(b(x-h)\big)+k||

Tangent

||f(x)=\tan x||

||f(x)=a\tan\big(b(x-h)\big)+k||

||\vert b\vert=\dfrac{\pi}{\text{period}}\\[3pt]\text{Dom}\ f=\mathbb{R}\backslash\left\{\left(h+\dfrac{P}{2}\right)+nP\right\}||where |n\in\mathbb{Z}| and |P| is the period.

Zeros: An infinite number of the form |x_1+nP| where |x_1| is a zero, |n\in\mathbb{Z}| and |P| is the period.

Arcsine

||f(x)=\arcsin(x)||or||f(x)=\sin^{-1}(x)||

||f(x)=a\arcsin\big(b(x-h)\big)+k||

Arccosine

||f(x)=\arccos(x)||or||f(x)=\cos^{-1}(x)||

||f(x)=a\arccos\big(b(x-h)\big)+k||

Arctangent

||f(x)=\arctan(x)||or||f(x)=\tan^{-1}(x)||

||f(x)=a\arctan\big(b(x-h)\big)+k||

Title (level 3)
Trigonometric Identities (Sec. 5 TS - SN)
Title slug (identifier)
trigonometric-identities
Corps

Basic identities

||\sin^2\theta+\cos^2\theta=1||

||1+\tan^2\theta=sec^2\theta||

||1+\text{cotan}^2\theta=\text{cosec}^2\theta||

Other identities

||\begin{align}\sin(a+b)&=\sin a\cos b+\cos a\sin b\\[3pt]\sin(a-b)&=\sin a\cos b-\cos a\sin b\\[3pt]\cos(a+b)&=\cos a\cos b-\sin a\sin b\\[3pt]\cos(a-b)&=\cos a\cos b+\sin a\sin b\\[3pt]\tan(a+b)&=\dfrac{\tan a+\tan b}{1-\tan a\tan b}\\[3pt]\tan(a-b)&=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\end{align}||

||\begin{align}\sin2x&=2\sin x\cos x\\[3pt]\cos2x&=1-2\sin^2x\\[3pt]\tan2x&=\dfrac{2}{\text{cotan}x-\tan x}\\[3pt]\sin(-\theta)&=-\sin\theta\\[3pt]\cos(-\theta)&=\cos\theta\\[3pt]\sin\left(\theta+\dfrac{\pi}{2}\right)&=\cos\theta\\[3pt]\cos\left(\theta+\dfrac{\pi}{2}\right)&=-\sin\theta\end{align}||

Title (level 2)
Geometry
Title slug (identifier)
geometry
Contenu
Title (level 3)
Converting Units of Measure
Title slug (identifier)
conversion-units
Corps
​|\text{km}| ​|\text{hm}| ​|\text{dam}| ​|\text{m}| ​|\text{dm}| |\text{cm}|​ ​|\text{mm}|
In this direction |\Rightarrow \times 10\qquad \qquad\qquad| In this direction |\Leftarrow \div 10|
​|\text{km}^2| ​|\text{hm}^2| ​|\text{dam}^2| |\text{m}^2|​ ​|\text{dm}^2| ​|\text{cm}^2| ​|\text{mm}^2|
In this direction |\Rightarrow \times 100\qquad \qquad\qquad| In this direction |\Leftarrow \div 100|
​|\text{km}^3| ​|\text{hm}^3| ​|\text{dam}^3| ​|\text{m}^3| ​|\text{dm}^3| ​|\text{cm}^3| ​|\text{mm}^3|
In this direction |\Rightarrow \times 1000\qquad \qquad\qquad| In this direction |\Leftarrow \div 1000|
Title (level 3)
The Perimeter and Area of Plane Figures (Sec. 1 - 4)
Title slug (identifier)
perimeter-area-plane-figures
Corps

Figure

Perimeter

Area

Triangle

The sum of all sides

|A =\dfrac{b\times h}{2}|

|A = \sqrt{p(p-a)(p-b)(p-c)}|
where
|p=\dfrac{a+b+c}{2}=| half-perimeter

|A=\dfrac{ab\sin C}{2}|
where |C=| measure of the angle located between sides |a| and |b|

Square

|P=4 \times s|

|\begin{align} A &= s \times s\\
A &= s^2
\end{align}|

Rectangle

|\begin{align} P &= b+h+b+h\\
P &= 2(b+h)
\end{align}|

|A=bh|

Rhombus

P=|4 \times s|

|A=\dfrac{D\times d}{2}|

Parallelogram

The sum of all sides

|A=bh|

Trapezoid

The sum of all sides

|A=\dfrac{(B+b)\times h}{2}|

Regular polygon

|P=n \times s|

|A=\dfrac{san}{2}|

Any polygon

The sum of all sides

The sum of the areas of all the triangles that make up the polygon

Circle

|\begin{align} d &= 2r\\\\
r &= \frac{d}{2}
\end{align}|

||\begin{align} C &= \pi d\\\\
C &= 2 \pi r
\end{align}||

|A=\pi r^2|

Circular arc and sector of a circle

|\displaystyle \frac{\text{Central angle}}{360^o}=\frac{\text{Arc length}}{2\pi r}|

|\displaystyle \frac{\text{Central angle}}{360^o}=\frac{\text{Area of sector}}{\pi r^2}|

Title (level 3)
Measurements in Circles
Title slug (identifier)
measures-circles
Corps

Theorems in a circle

Theorems related to radii, diameters, chords and arcs:

  • The radii of a circle are congruent.

  • The diameter is the longest chord in a circle.

  • In the same circle or in two isometric circles, two isometric chords are located at the same distance from the centre and vice versa.

  • Any diameter perpendicular to a chord divides that chord and each of the arcs it subtends into two isometric parts.

  • In a circle, two arcs are congruent if and only if they are subtended by congruent chords.

Theorems related to angles:

  • Connecting any point on a circle to the endpoints of a diameter forms a right angle.

  • The measure of an inscribed angle is half that of the arc formed between its sides.

  • An angle whose vertex lies between the circle and its centre measures half the sum of the lengths of the arcs between its extended sides.

  • An angle whose vertex lies outside a circle measures half the difference between the lengths of the arcs between its sides.

Theorems relating to the secants and tangents of the circle:

  • Any line perpendicular to the endpoint of a ray is tangent to the circle and vice versa.

  • Two parallel lines, secant or tangent to a circle, intercept two isometric arcs on the circle.

  • If two tangents are drawn from point |P| outside a circle with centre |O,| to points |A| and |B| on the circle, then line |OP| is the angle bisector of angle |APB| and |\mathrm{m}\overline{PA}=\mathrm{m}\overline{PB}.|

  • If the extension of a chord |\overline{AB}| intersects the extension of a chord |\overline{CD}| at a point |P| outside the circle, then the product of |\mathrm{m}\overline{PA}| and |\mathrm{m}\overline{PB}| is equal to the product of |\mathrm{m}\overline{PC}| and |\mathrm{m}\overline{PD}.|

  • If from point |P| outside a circle a line tangent to the circle is drawn at |C| and another line intersects the circle at |A| and |B|, then the product of |\mathrm{m}\overline{PA}| and |\mathrm{m}\overline{PB}| is equal to the square of |\mathrm{m}\overline{PC}.|

  • When two chords intersect inside a circle, the product of the measures of the segments of one equals the product of the measures of the segments of the other.

Title (level 3)
Measurements in Polygons (Sec. 1-2)
Title slug (identifier)
measures-polygons
Corps

Total number of diagonals

Number of diagonals at each vertex

Sum of the measures of the interior angles

Measure of an interior angle

|\dfrac{n(n-3)}{2}|

|n-3|

|180(n-2)|

|\dfrac{180(n-2)}{n}|

Title (level 3)
The Area and Volume of Solids (Sec. 2-3)
Title slug (identifier)
area-volume-solids
Corps

​Solids

Lateral area

Total area

Volume

​Prism and cylinder

Sum of the areas of the lateral faces of the solid

|A_L=P_b\times h|

​Sum of the areas of all faces of the solid

|A_T = A_L+2A_b|

​|V=A_b\times h|

​Pyramid and cone

​Sum of the areas of the lateral faces of the solid

|A_L=\displaystyle \frac{P_b\times a}{2}|

Sum of the areas of all faces of the solid

|A_T = A_L+A_b|

​|V=\displaystyle \frac{A_b\times h}{3}|

​Sphere

|A=4\pi r^2|

​|V=\displaystyle \frac{4\pi r^3}{3}|

Title (level 3)
Measurements in Right Triangles (Sec. 3-4)
Title slug (identifier)
measurements-right-triangle
Corps

Theorems in a right triangle

  • Pythagorean theorem
    ​In any right triangle, the sum of the square of the legs |(a| and |b)| is equal to the square of the hypotenuse |(c).|||a^2+b^2 = c^2||

  • In any triangle, the measure of any one side is smaller than the sum of the measures of the other two sides.

  • In any isosceles triangle, the angles opposite the congruent sides are congruent.

  • In any right triangle, the acute angles are complementary |(90^\circ).|

  • Any right triangle with a |30^\circ| angle has a side opposite the |30^\circ| angle that is equal to half the hypotenuse.

Metric Relations in a Right Triangle

Altitude to Hypotenuse theorem

In a right triangle, the height |(h)| drawn from the right angle is the proportional mean between the 2 segments it creates on the hypotenuse |(m| and |n).|||\dfrac{m}{h}=\dfrac{h}{n}\quad\text{or}\quad h^2=mn||

Product of the Sides theorem

In a right triangle, the product of the hypotenuse |(c)| and the corresponding height |(h)| is equal to the product of legs |(a| and |b).|||ch=ab\quad\text{or}\quad h=\dfrac{ab}{c}||

Proportional Mean theorem

In a right triangle, each leg |(a| and |b)| is the proportional mean between its projection onto hypotenuse |(m| or |n)| and the entire hypotenuse |(c).|||\dfrac{m}{a}=\dfrac{a}{c}\quad\text{or}\quad a^2=mc\\\dfrac{n}{c}=\dfrac{b}{c}\quad\text{or}\quad b^2=nc||

Title (level 3)
Trigonometric Ratios
Title slug (identifier)
trigonometric-ratios
Corps

Trigonometric ratios
(right triangles)

Trigonometric laws
(any triangle)
||\sin A=\dfrac{\text{Opposite}}{\text{Hypotenuse}}|| ||\text{csc }A=\dfrac{1}{\sin A}=\dfrac{\text{Hypotenuse}}{\text{Opposite}}|| ​||\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}||
||\cos A=\dfrac{\text{Adjacent}}{\text{Hypotenuse}}|| ​||\text{sec }A=\dfrac{1}{\cos A}=\dfrac{\text{Hypotenuse}}{\text{Adjacent}}|| ​||\begin{align}a^2&=b^2+c^2-2bc\cos A\\[3pt]b^2&=a^2+c^2-2ac\cos B\\[3pt]c^2&=a^2+b^2-2ab\cos C\end{align}||
||\tan A=\dfrac{\text{Opposite}}{\text{Adjacent}}|| ||\text{cotan}A=\dfrac{1}{\tan A}=\dfrac{\text{Adjacent}}{\text{Opposite}}||  
Title (level 3)
Similar Figures and Solids
Title slug (identifier)
similar-figures-solids
Corps

Similarity ratio (Scale factor)

Area ratio

Volume ratio

||k=\dfrac{\text{Length of image figure}}{\text{Length of initial figure}}||

||k^2=\dfrac{\text{Area of image figure}}{\text{Area of initial figure}}||

​||k^3=\dfrac{\text{Volume of image solid}}{\text{Volume of initial solid}}||

Title (level 3)
Vectors (Sec. 5 TS-SN)
Title slug (identifier)
vectors
Corps

Vector components |\boldsymbol{(a,b)}|

||a=\Vert \overrightarrow{u}\Vert \cos \theta|| ||b=\Vert \overrightarrow{u}\Vert \sin \theta||

Consider the vector |\overrightarrow{AB}| where |A(x_1, y_1)| and |B(x_2, y_2)|

The components are: ||a=x_2-x_1\\b=y_2-y_1||

Magnitude (norm) of a vector

Consider the vector |\overrightarrow{u}=(a,b)|

The magnitude is: ||\Vert\overrightarrow{v}\Vert=\sqrt{a^2+b^2}||

Consider the vector  |\overrightarrow{AB}| where |A(x_1, y_1)| and |B(x_2, y_2)|

The magnitude is:  ||\Vert\overrightarrow{AB}\Vert=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}||

Direction (orientation) of a vector

|\theta=\tan^{-1}\left(\displaystyle\frac{b}{a}\right)|

  • If​ |a>0,\ b>0\ \Rightarrow\ \theta| is correct.

  • If​ |a<0,\ b>0\ \Rightarrow\ \theta+180^o.|

  • If |a<0,\ b<0\ \Rightarrow\ \theta+180^o.|

  • If |a>0,\ b<0\ \Rightarrow\ \theta+360^o.|

Adding two vectors

Consider |\overrightarrow{u}=(a,b)| and |\overrightarrow{v}=(c,d)|

Therefore, |\overrightarrow{u}+\overrightarrow{v}=(a+c,b+d)|

|\Vert \overrightarrow{u}+\overrightarrow{v}\Vert=\Vert \overrightarrow{u}\Vert+\Vert \overrightarrow{v}\Vert-2\Vert \overrightarrow{u}\Vert\ \Vert \overrightarrow{v}\Vert\ \cos\theta|

where |\theta =\ \Large{\mid} \normalsize 180^o - \mid \theta_\overrightarrow{u}-\theta_\overrightarrow{v}\mid \Large{\mid}|

Subtracting two vectors

Consider |\overrightarrow{u}=(a,b)| and |\overrightarrow{v}=(c,d)|

Therefore, |\overrightarrow{u}-\overrightarrow{v}=(a-c,b-d)|​

|\Vert \overrightarrow{u}+\overrightarrow{v}\Vert=\Vert \overrightarrow{u}\Vert+\Vert \overrightarrow{v}\Vert-2\Vert \overrightarrow{u}\Vert\ \Vert \overrightarrow{v}\Vert\ \cos\theta|

where |\theta=\mid \theta_\overrightarrow{u}-\theta_\overrightarrow{v}\mid| if |\mid \theta_\overrightarrow{u}-\theta_\overrightarrow{v}\mid<180^o|
and |\theta = 180^o - \mid \theta_\overrightarrow{u}-\theta_\overrightarrow{v}\mid| otherwise

Scalar multiplication

Consider scalar |k| and vector |\overrightarrow{u}=(a,b)|

Therefore, |k\overrightarrow{u}=(ka,kb)|
||\begin{align}\Vert k \overrightarrow{u} \Vert &= k \times \Vert\overrightarrow{u}\Vert \\ \theta_{k \overrightarrow{u}} &= \theta_{\overrightarrow{u}} \end{align}||

Scalar (dot) product

If the scalar product equals |0,| the vectors are perpendicular.

Using components

Consider |\overrightarrow{u}=(a,b)| and |\overrightarrow{v}=(c,d)|

Then, |\overrightarrow{u}\cdot \overrightarrow{v}=ac+bd|

Using the magnitude and direction

|\overrightarrow{u}\cdot \overrightarrow{v}=\Vert\overrightarrow{u}\Vert\times \Vert\overrightarrow{v}\Vert\times \cos\theta|

Properties of the addition of two vectors

1) The sum of two vectors is a vector.

 

2) Commutativity

|\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{v}+\overrightarrow{u}|

3) Associativity

|(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})|

4) Existence of a neutral (identity) element

|\overrightarrow{u}+\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{u}=\overrightarrow{u}|

​5) Existence of opposites

|\overrightarrow{u}+(-\overrightarrow{u})=-\overrightarrow{u}+\overrightarrow{u}=\overrightarrow{0}|

Properties of scalar multiplication

1) The product of a vector and a scalar is always a vector.

 

2) Associativity

|k_1(k_2\overrightarrow{u})=(k_1k_2)\overrightarrow{u}|

​3) Existence of a neutral (identity) element

|1\times \overrightarrow{u}=\overrightarrow{u}\times 1=\overrightarrow{u}|

​4) Distributivity over vector addition

|k(\overrightarrow{u}+\overrightarrow{v})=k\overrightarrow{u}+k\overrightarrow{v}|

5) Distributivity over scalar addition

|(k_1+k_2)\overrightarrow{u}=k_1\overrightarrow{u}+k_2\overrightarrow{v}|

Properties of the scalar (dot) product

1) Commutativity

|\overrightarrow{u}\cdot \overrightarrow{v}=\overrightarrow{v}\cdot \overrightarrow{u}|

​2) Scalar associativity

|k_1\overrightarrow{u}\cdot k_2\overrightarrow{v}=k_1k_2(\overrightarrow{u}\cdot\overrightarrow{v})|

​3) Distributivity over a vector sum

|\overrightarrow{u}\cdot(\overrightarrow{v}+\overrightarrow{w})=(\overrightarrow{u}\cdot\overrightarrow{v})+(\overrightarrow{u}\cdot\overrightarrow{w})|

Title (level 2)
Analytic Geometry
Title slug (identifier)
geometrie-analytique
Contenu
Title (level 3)
Lines on a Cartesian Plane (Sec. 3-4)
Title slug (identifier)
lines-cartesian-plane
Corps

Concept

Formulas

Displacements

||\begin{align}\Delta x&=x_2-x_1\\[3pt]\Delta y&=y_2-y_1\end{align}||

Distance between two points

||d(A,B)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}||

Division point formula

Part-to-whole ratio

Part-to-part ratio

||\begin{align}x_p&=x_1+\dfrac{r}{s}(x_2-x_1)\\[3pt]y_p&=y_1+\dfrac{r}{s}(y_2-y_1)\end{align}||

||\begin{align}x_p&=x_1+\dfrac{r}{r+s}(x_2-x_1)\\[3pt]y_p&=y_1+\dfrac{r}{r+s}(y_2-y_1)\end{align}||

Midpoint formula

||(x_m,y_m)=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)||

Slope (rate of change) of a line

||a=\dfrac{\Delta y}{\Delta x}=\dfrac{y_2-y_1}{x_2-x_1}||

Relative position of two lines with equations of the form |y=ax+b|

Coinciding parallel lines

Disjoint parallel lines

Perpendicular lines

||\begin{align}a_1&=a_2\\[3pt]b_1&=b_2\end{align}||

||\begin{align}​a_1&=a_2\\[3pt]b_1&\neq b_2\end{align}||

||a_1=-\dfrac{1}{a_2}||

Title (level 3)
Geometric Transformation Rules and Their Inverses on the Cartesian Plane (Sec. 5 TS)
Title slug (identifier)
geometric-transformations
Corps

Transformation

​​Rules

​Inverse

​Translation

||t_{(a,b)}:(x,y)\stackrel{t}{\mapsto}(x+a,y+b)||

​||t^{-1}_{(a,b)}=t_{(-a,-b)}:(x,y)\stackrel{t}{\mapsto}(x-a,y-b)||

​Rotation

||\begin{align}r_{(O,90^\circ)}&:(x,y)\stackrel{r}{\mapsto}(-y,x)\\[3pt]r_{(O,-270^\circ)}&:(x,y)\stackrel{r}{\mapsto}(-y,x)\\[3pt]r_{(O,180^\circ)}&:(x,y)\stackrel{r}{\mapsto}(-x,-y)\\[3pt]r_{(O,-90^\circ)}&:(x,y)\stackrel{r}{\mapsto}(y,-x)\\[3pt]r_{(O,270^\circ)}&:(x,y)\stackrel{r}{\mapsto}(y,-x)\end{align}||

||\begin{align}​r^{-1}_{(O,90^\circ)}&=r_{(O,-90^\circ)}\\[3pt]r^{-1}_{(O,-270^\circ)}&=r_{(O,270^\circ)}\\[3pt]r^{-1}_{(O,180^\circ)}&=r_{(O,180^\circ)}\\[3pt]r^{-1}_{(O,-90^\circ)}&=r_{(O,90^\circ)}\\[3pt]r^{-1}_{(O,270^\circ)}&=r_{(O,-270^\circ)}\end{align}||

​Reflection

(Symmetry)

||\begin{align}​s_x&:(x,y)\stackrel{s}{\mapsto}(x,-y)\\[3pt]s_y&:(x,y)\stackrel{s}{\mapsto}(-x,y)\\[3pt]s_{\small/}&:(x,y)\stackrel{s}{\mapsto}(y,x)\\[3pt]s_{\tiny\backslash}&:(x,y)\stackrel{s}{\mapsto}(-y,-x)\end{align}||

||\begin{align}​s^{-1}_x&=s_x\\[3pt]s^{-1}_y&=s_y\\[3pt]s^{-1}_{\small/}&=s_{\small/}\\[3pt]s^{-1}_{\tiny\backslash}&=s_{\tiny\backslash}\end{align}||

​​Dilation

||h_{(O,k)}:(x,y)\stackrel{h}{\mapsto}(kx,ky)||

​||h^{-1}_{(O,k)}=h_{\left(\frac{1}{k},\frac{1}{k}\right)}:(x,y)\stackrel{h}{\mapsto}\left(\dfrac{x}{k},\dfrac{y}{k}\right)||

Title (level 3)
Conics (Sec. 5 TS - SN)
Title slug (identifier)
conics
Corps

​Conic

Standard equations

Parameters

Circle

Geometric locus of all points located at an equal distance from the centre.

||x^2+y^2=r^2|| ||(x-h)^2+(y-k)^2=r^2||

|r:| radius

|(h,k):| Centre of circle

Ellipse

Geometric locus of all points for which the sum of the distances to the two foci is constant.

||\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1|| ||\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1||

||\begin{align}a&=\dfrac{\text{Horizontal axis}}{2}\\b&=\dfrac{\text{Vertical Axis}}{2}\end{align}|| |(h,k):| Centre of the ellipse

Hyperbola

Geometric locus of all points for which the absolute value of the difference in distance to the two foci is constant.

||\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=\pm1|| ||\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=\pm1||

Asymptotes: ||\begin{align}y&=\dfrac{b}{a}(x-h)+k\\y&=-\dfrac{b}{a}(x-h)+k\end{align}|| |(h,k):| Centre of the hyperbola

Parabola

Geometric locus of all points located at an equal distance from the directrix and the focal point.

​||(x-h)^2=4c(y-k)|| ||(y-k)^2=4c(x-h)||

||\vert c\vert :\dfrac{\text{Distance focus-directrix}}{2}|| |(h,k):| Vertex of the parabola

Title (level 3)
Unit Circle
Title slug (identifier)
unit-circle
Corps

||P(\theta)=(\cos\theta,\sin\theta)||

Image
The Unit Circle with its Main Points.
Title (level 2)
Probability and Statistics
Title slug (identifier)
probability-statistics
Contenu
Title (level 3)
The Probability of Events (Sec. 1-5)
Title slug (identifier)
probability-events
Corps

Concept

Formulas

​Probability

||\text{Probability}=\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}}||

​​Complementary probability

||\mathbb{P}(A')=1-P(A)||

Probability of mutually exclusive events

||\mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)||

​Probability of non-mutually exclusive events

||\mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B)||

Conditional probability

||\mathbb{P}(B\mid A)=\mathbb{P}_A(B)=\dfrac{\mathbb{P}(B\cap A)}{\mathbb{P}(A)}||

Expected gain

||\mathbb{E}[\text{Gain}]=\text{Probability of winning}\times\text{Net gain}+\text{Probability of losing}\times\text{Net loss}||

​Mathematical expectation

||\mathbb{E}[X]=x_1\mathbb{P}(x_1)+x_2\mathbb{P}(x_2)+\ldots+x_n\mathbb{P}(x_n)||where the possible outcomes of |X| are the values |x_1, \ldots, x_n.|

Title (level 3)
Measures of Central Tendency
Title slug (identifier)
measures-central-tendency
Corps

​Measure

Listed data

Condensed data

Grouped data

​​Mean

||\overline{x}=\dfrac{\sum x_i}{n}||

||\overline{x}=\dfrac{\sum x_i n_i}{n}||

Approximate mean: ||\overline{x}=\dfrac{\sum m_i n_i}{n}||

​​Median

||\text{Rank}_\text{median}=\left(\dfrac{n+1}{2}\right)|| If |n| is odd, the median is obtained directly.

If |n| is even, the median is obtained by calculating the mean of the two central data values.

||\text{Rank}_\text{median}=\left(\dfrac{n+1}{2}\right)|| If |n| is odd, the median is obtained directly.

If |n| is even, the median is obtained by calculating the mean of the two central data values.

Medial class:

The class that contains the median.

The median of a grouped-data distribution is often estimated by calculating the middle of the medial class.

​Mode

The most frequent data value

The most frequent data value

Modal class:

The class with the largest frequency

Title (level 3)
Measures of Dispersion (Sec. 2-3-4 CST-TS)
Title slug (identifier)
measures-dispersion
Corps

Measure

Listed data

Condensed data

Grouped data

​Range

||R=x_\text{max}-x_\text{min}||

||R=\text{Value}_\text{Max}-\text{Value}_\text{Min}||

||R=\text{Boundary}_\text{upper}-\text{Boundary}_\text{lower}||

​Interquartile range

||IR=Q_3-Q_1||

||IR=Q_3-Q_1||

||IR=Q_3-Q_1||

​Quarter range

||Q=\dfrac{EI}{2}=\dfrac{Q_3-Q_1}{2}||

||Q=\dfrac{EI}{2}=\dfrac{Q_3-Q_1}{2}||

||Q=\dfrac{EI}{2}=\dfrac{Q_3-Q_1}{2}||

Mean deviation

||MD=\dfrac{\sum\mid x_i-\overline{x}\mid}{n}||

||MD=\dfrac{\sum n_i\mid X_i-\overline{x}\mid}{n}||

||MD=\dfrac{\sum n_i \mid m_i-\overline{x}\mid}{n}||

Standard deviation

||\sigma=\sqrt{\dfrac{\sum (x_i-\overline{x})^2}{n}}||

||\sigma=\sqrt{\dfrac{\sum n_i(X_i-\overline{x})^2}{n}}||

||\sigma=\sqrt{\dfrac{\sum n_i (m_i-\overline{x})^2}{n}}||

Title (level 3)
Measures of Position
Title slug (identifier)
measures-position
Corps

Measure

Formulas

Quintile rank

||R_5(x)\approx\left(\dfrac{\text{No. of data values greater than } x+\dfrac{\text{No. of data values equal to }x}{2}}{\text{Total number of data values}}\right) \times 5|| If the result is not a whole number, round up.

Percentile rank

||R_{100}(x)\approx\left(\dfrac{\text{No. of data values less than } x+\dfrac{\text{No. of data values equal to }x}{2}}{\text{Total number of data values}}\right) \times 100|| If the result is not a whole number, round up to the next whole number, unless the result is |99.|

Title (level 3)
Correlation Coefficient (Sec. 4)
Title slug (identifier)
correlation-coefficient
Corps

Calculating the correlation coefficient on the Cartesian plane

||r\approx\pm\left(1-\dfrac{l}{L}\right)|| where |L| represents the length and |l,| the width of the rectangle that encompasses the scatter plot.

The sign of |r| depends on the direction of the scatter plot.

Interpretation of the correlation coefficient

Close to |0|​ Zero link between the variables
Close to |\text{-}0.5| or |0.5| Weak link between the variables
Close to |\text{-}0.75| or |0.75| Moderate link between the variables
Close to |\text{-}0.87| or |0.87| Strong link between the variables
Equal to |\text{-}1| or |1| Perfect link between the variables
Remove audio playback
No
Printable tool
Off