Content code
m1250
Slug (identifier)
properties-sin-cosine-function
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
fonction cosinus
fonction sinus
déphasage
amplitude
fonction sinusoïdale
Sinusoïdale
cycle
motif
abscisse à l'origine
sommet
Content
Contenu
Corps

In the following animation, select a sinusoidal function (sine or cosine), and then experiment with its parameters |a,| |b,| |h,| and |k|. Observe their effects on the function’s properties. After experimenting, read the concept sheet for more details concerning the properties of these functions.

Corps

The following table provides an analysis of all the properties of the sine function along with examples.

Corps

Properties

Standard Equation

Example

Formula

|f(x)=a\sin(b(x-h))+k|

|f(x)=-4\sin(-2(x-\pi))+3|

Graphique d'une fonction sinusoïdale déphasée dont la période est pi

Midline

|y=k|

|y=3|

Period

|P=\dfrac{2 \pi}{\mid b \mid }|

|P=\dfrac{2\pi}{\mid -2 \mid}=\pi|

Domain |(\text{dom }f)|

|\text{dom }f=\mathbb{R}|

|\text{dom } f=\mathbb{R}|

Range |(\text{ran }f)|

|\text{ran } f = [k\ -\mid a \mid ,\ k\ +\mid a \mid]|

|[-1,\ 7]|

Variation

  • If |a| and |b| have the same sign |(ab>0),| the function increases when it passes through the point |(h,k).|

    • The function increases over the interval |[h-\frac{1}{4}P+nP,\ h+\frac{1}{4}P+nP].|1

    • It decreases over the interval |[h+\frac{1}{4}P+nP,\ h+\frac{3}{4}P+nP].|1

  • If |a| and |b| have opposite signs |(ab<0)|, the function decreases as it passes through the point |(h,k).|

    • The function increases over the interval |[h+\frac{1}{4}P+nP,\ h+\frac{3}{4}P+nP].|1

    • It decreases over the interval |[h-\frac{1}{4}P+nP,\ h+\frac{1}{4}P+nP].|1

1|P| is the period where |n \in \mathbb{Z}.|

Since |a| and |b| have the same sign, the function increases as it passes through the point |(\pi,3).|

The function increases over the interval ||\left[\dfrac{3\pi}{4}+n\pi,\ \dfrac{5\pi}{4}+n\pi\right],||
where |n \in \mathbb{Z}.|

The function decreases over the interval ||\left[\dfrac{5\pi}{4}+n\pi,\ \dfrac{7\pi}{4}+n\pi\right],||
where |n \in \mathbb{Z}.|
 

 

Zeros of the Function

These are the values of |x| for which |f(x)=0.|
If there are two zeros in the function, then all the other zeros are given by : ||x=x_{1}+nP\quad \text{et}\quad x=x_{2}+nP||
where |P| is the period and |n\in \mathbb{Z}|

|x=5{.}13+n\pi|

and

|x=5{.}85+n\pi|

where |n\in \mathbb{Z}|

y-Intercept

This is the value of |f(0)|

|f(0)=3|

Sign

The intervals where the function is positive and negative depend on the zeros of the function, the period, and the shape of the graph.

The function is negative on the intervals |[5{.}13+n\pi,\ 5{.}85+n\pi]| where |n\in\mathbb{Z}.|

The function is positive on the intervals |[5{.}85+n\pi,\ 8{.}28+n\pi]| where |n\in\mathbb{Z}.|

Extrema

Maximum: |k\ + \mid a\ \mid|

Minimum: |k\ - \mid a\ \mid|

Maximum: |7|

Minimum: |-1|

Content
Corps

Determine the properties of the following sine function: ||f(x)=-1{.}5\sin\left(2\left(x-\frac{3\pi}{4}\right)\right)+1||

It may be useful to plot the graph of the function.

Image
Image
Corps
  • The equation for the axis of oscillation is |y=1.|

  • The parameter |b| is equal to 2, therefore the period of the function is |\displaystyle P = \frac{2\pi}{\mid b \mid} = \frac{2\pi}{\mid 2 \mid} = \pi.|

  • The domain of the function is the set of real numbers, i.e., |\mathbb{R}.|

  • The range of the function is an interval of the form |[k\ -\mid a \mid,\ k\ + \mid a \mid ].|
    Here, |a=-1{.}5| and |k=1,| so the range is the interval |[-0{.}5;\ 2{.}5].|

  • The variation: since the parameters |a| and |b| have opposite signs, the curve decreases when it passes through the point of inflection |(h,k)= \left(\dfrac{3\pi}{4}, 1\right).|

    • The function decreases over the interval |\left[h-\frac{1}{4}P+nP,\ h+\frac{1}{4}P+nP\right].|
      Replacing |h| with |\dfrac{3\pi}{4}| and |P| by |\pi| gives the following interval: ||\left[\frac{\pi}{2} + n \pi,\ \pi +n \pi \right]|| where |n \in \mathbb{Z}|

    • It increases over the interval |\left[h+\frac{1}{4}P+nP,\ h+\frac{3}{4}P+nP \right].|
      Replacing |h| by |\dfrac{3\pi}{4}| and |P| by |\pi| gives the following interval: ||\left[\pi + n \pi,\ \frac{3 \pi}{2}+n\pi \right]|| where |n \in \mathbb{Z}|

  • The zeros of the function are calculated by replacing |f(x)| by |0.| ||\begin{align}0 &= -1{.}5\sin\left(2\left(x-\frac{3\pi}{4}\right)\right)+1\\-1 &= -1{.}5 \sin\left(2\left(x-\frac{3\pi}{4}\right)\right)\\ \frac{-1}{-1{.}5} &= \frac{2}{3} = \sin\left(2\left(x-\frac{3\pi}{4}\right)\right)\end{align}||Now, refer to the unit circle to find the points where sine is |\dfrac{2}{3}.|
    The first value corresponds to approximately |0{.}73| radians, because |\sin^{-1}\left(\dfrac{2}{3}\right)\approx 0{.}73.|
    Draw a unit circle for the second value.

Image
Picture
Corps

The second value corresponds to the angle between the  |x|-axis and the dotted red line. Use |\pi - 0{.}73  \approx 2{.}41| radians to calculate this value.

The solution is not yet finished since these two values correspond to the value of the angle in sine, i.e.,  ||2\left(x-\frac{3\pi}{4}\right)=0{.}73\text{ radian }\\ \text{and}\\ 2\left(x-\frac{3\pi}{4}\right)=2{.}41\text{ radians}|| It is still necessary to isolate |x| in both equations.

In the first case : ||\begin{align}2\left(x-\frac{3\pi}{4}\right)&=0{.}73\\x-\frac{3\pi}{4} &= 0{.}365\\x &= 0{.}365 + \frac{3\pi}{4}\\x_1 &\approx 2{.}72\end{align}||In the second case : ||\begin{align}2\left(x-\frac{3\pi}{4}\right) &= 2{.}41\\x - \frac{3\pi}{4} &= 1{.}205\\x &= 1{.}205 + \frac{3\pi}{4}\\ x_2 &\approx 3{.}56\end{align}||Thus, the general expression which gives the zeros is: ||\lbrace 2{.}72 + n \pi \rbrace \cup \lbrace 3{.}56 + n \pi \rbrace \text{ where } n \in \mathbb{Z}||

  • To calculate the y-intercept, replace |x| by |0.| ||\begin{align}f(0) &= -1{.}5 \sin\left(2\left(0-\frac{3\pi}{4}\right)\right)+1\\ f(0) &= -1{.}5\sin\left(-\frac{6\pi}{4}\right)+1\\ f(0) &= -1{.}5\sin\left(-\frac{3\pi}{2}\right)+1\\ f(0) &=-1{.}5 (1) + 1\\f(0) &= -0{.}5\end{align}||

  • The sign or positive and negative intervals of the function can be found with the zeros. Three consecutive zeros are required: |x_1\approx 2{.}72,| |x_2\approx 3{.}56| and ||\begin{align}x_3 &= x_1+P \\ &= 2{.}72+\pi \\ &\approx 5{.}86\end{align}||

    • The function is positive on the interval |[3{.}56+n \pi,\ 5{.}86+n \pi],| where |n \in \mathbb{Z}.|

    • It is negative on the interval |[2{.}72 + n \pi,\ 3{.}56 + n \pi],| where |n \in \mathbb{Z}.|

  • The extrema of the function are:

    • Maximum: |k +{\mid}a{\mid} = 1 + 1{.}5=2{.}5|

    • Minimum: |k - {\mid}a{\mid} = 1 - 1{.}5 = -0{.}5|

Content
Corps

Both sine and cosine functions are sinusoidal functions. Thus, the same curve can be written with either the cosine or sine function. In this case, the two equations will share the same parameters |\mid a \mid ,| |\mid b \mid| and |k.| Only the parameter |h| will be different. Thus, several properties of the curve can be determined in the same way.

To analyse the parameters and see an example of the properties of a sinusoidal function with the cosine relationship, review the following concept sheet: The Properties of the Cosine Function (Sine).

Title
See also
Links