Content code
m1254
Slug (identifier)
switching-from-standard-to-general-form
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
forme
passage
forme canonique
canonique
rationnelle
polynômes
formes de la fonction rationnelle
fonction rationnelle
transformation de la fonction rationnelle
forme canonique de la fonction rationnelle
forme homographique
Content
Contenu
Corps

Switching from one form of equation to another is common when working with rational functions.

Links
Content
Corps

A rational function is a function of the form |P/Q| where both the numerator and the denominator are polynomials.

Here, we are interested when the polynomials |P| and |Q| are linear functions.
||f(x)= \frac{P}{Q} = \frac{ax+b}{cx+d}|| Note: When the two polynomials are linear functions, this form of the rule is called the general form or homographic form of a rational function.
It is necessary for at least one of the two parameters |a| and |c| to be non-zero.

Title (level 2)
Switching from Standard Form to General Form
Title slug (identifier)
switching-standard-form
Contenu
Corps

Here is how to convert the standard form |\displaystyle \frac{a}{b(x-h)}+k| to the general form |\displaystyle \frac{ax+b}{cx+d}|.

Content
Corps
  1. Put the two fractions over the same denominator.

  2. Add the two numerators.

Content
Corps

||\begin{align} f(x) &= \dfrac{3}{2(x+1)}-2 \\ &= \dfrac{3}{2(x+1)}-\dfrac{2\times \color{#ec0000}{2(x+1)}}{\color{#ec0000}{2(x+1)}} \\ &= \dfrac{3}{2(x+1)} - \dfrac{4(x+1)}{2(x+1)} \\ &= \dfrac{3-4(x+1)}{2(x+1)} \\ &= \dfrac{3-4x-4}{2(x+1)} \\ &= \dfrac{-4x-1}{2x+2} \end{align}||

Title (level 2)
Switching from General Form to Standard Form
Title slug (identifier)
switching-form-general
Contenu
Corps

Here is how to convert from the general form |\displaystyle \frac{ax+b}{cx+d}| to the standard form |\displaystyle \frac{a}{b(x-h)}+k|.

Content
Corps

Divide the numerator by the denominator.

Content
Corps

Transform the following rational function. ||f(x) = \dfrac{-4x-1}{2x+2}||

First, divide the numerator by the denominator. ||\require{enclose} \begin{array}{rll} -2 \\[-3pt] 2x+2 \enclose{longdiv}{-4x-1}\kern-.2ex \\[-3pt] \underline{-(-4x-4)}\\[-3pt] 3 \\[-3pt] \end{array}||

The |\color{#3a9a38}{3}| corresponds to the remainder, |\color{#ec0000}{2x+2}| remains the denominator, and |\color{#333fb1}{-2}| is the integer result of the division, that is, the parameter |k.|

So, the result of the division is the following. ||\begin{align} f(x) = \dfrac{\color{#3a9a38}{3}}{\color{#ec0000}{2x+2}} \color{#333fb1}{-2} \end{align}||

After factoring the denominator, the final result is: ||\begin{align} f(x) = \dfrac{\color{#3a9a38}{3}}{\color{#ec0000}{2(x+1)}} \color{#333fb1}{-2} \end{align}||

Remove audio playback
No