Content code
m1295
Slug (identifier)
the-area-of-triangle-using-herons-formula
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
Heron’s formula
formula area of a triangle
trigonometric formula
Heron
area of the triangle
area of any triangle
Heron’s Law
half-perimeter
Content
Contenu
Content
Corps

Heron's formula is a formula which allows us to find the area of any triangle when the three side lengths are given.

Corps

If we know the measures |a|, |b|, and |c| of the three sides of any triangle ABC, we can calculate the area of the triangle using Heron's formula.

Content
Corps

The area A of any triangle whose side lengths are |a,| |b|, and |c,| is determined by the following formula: ||A=\sqrt{p(p-a)(p-b)(p-c)}||

where |p| represents the half-perimeter of the triangle, determined by the following formula: ||p=\frac{a+b+c}{2}||

Content
Corps

Let's calculate the area of the following triangle.

Image
image
Corps

Calculation of the half-perimeter:
||\begin{align} p &=\frac{a+b+c}{2} \\\\
&=\frac{75+83+100}{2}\\\\
&=129\ \mathrm{cm}\\\\
\Rightarrow A&=\sqrt{p(p-a)(p-b)(p-c)}\\
&=\sqrt{129(129-75)(129-83)(129-100)}\\
&=3\ 048{.}38\ \mathrm{cm}^{2}\end{align}||
The area of triangle ABC is |3\ 048{.}38\ \mathrm{cm}^2|.

Content
Corps

Find the area of the following triangle:

Image
Image
Corps

First, determine the missing length for the third side of the triangle. To do this, use sine law.
||\begin{align} \frac{a}{\sin A} &= \frac{b}{\sin B} &&= \frac{c}{\sin C}\\\\
\Rightarrow \frac{3}{\sin 25°} &= \frac{6{.}64}{\sin B} &&\\\\
\frac{6{.}64\times {\sin 25°}}{3} &= \sin B &&\\\\
0{.}9354 &\approx \sin B &&\\
69{.}29^\circ &\approx B && \end{align}||
The third angle (angle C) is therefore:
||180 - 25 - 69{.}29 = 85{.}71°||
Therefore, we can use sine law again to determine the measure of the missing side.
||\begin{align} \frac{3}{\sin 25°} &= \frac{c}{\sin 85{.}71°}\\\\
\frac{\sin 85{.}71° \times {3}}{\sin 25°} &= c\\\\
7{.}08 &\approx c\end{align}||
Now that we know the measure of the missing side, we can calculate the half-perimeter and find the area of the triangle using Heron’s formula.
||\begin{align} p&=\frac{a+b+c}{2}\\\\
&=\frac{3 + 6{.}64 + 7{.}08}{2}\\\\
&=8{.}36\ \mathrm{cm} \\\\
\Rightarrow A&=\sqrt{p(p-a)(p-b)(p-c)}\\
&=\sqrt{8{.}36(8{.}36-3)(8{.}36-6{.}64)(8{.}36-7{.}08)}\\
&=10\ \mathrm{ cm}^{2}\end{align}||
The area of the triangle is |10\ \mathrm{ cm}^2.|

Content
Corps

Trigonometric formula

It is also possible to calculate the area of a triangle if we know the measure of two of its sides and the measure of the angle between those sides. We then use the following trigonometric formula: ||A = \frac{a\times b \times \sin C}{2}||

Image
Image
Corps

To confirm you understand Héron's formula, see the interactive CrashLesson on trigonometry:

MiniRécup
Title (level 2)
Video
Title slug (identifier)
video
Contenu
Title
Title (level 2)
Exercises
Title slug (identifier)
exercises
Contenu
Contenu
Largeur de l'exercice
720
Hauteur de l'exercice
540
Largeur de l'exercice
720
Hauteur de l'exercice
540
Remove audio playback
No
Printable tool
Off