Content code
m1252
Slug (identifier)
the-properties-of-logarithmic-functions
Parent content
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
domaine
propriétés
logarithmique
négative
positive
signe
propriétés de la fonction logarithme
propriétés de la fonction logarithmique
Content
Contenu
Corps

In the following animation, experiment with the values of parameters |a,| |b,| |c,| |h,| and |k| in the logarithmic function and observe their effects on the function’s properties. Then, read the concept sheet to learn more about each of the properties of the function.

Corps

Properties

Basic logarithmic function ||f(x)=\log_c x|| where |c>0| and |c \neq 1|

Log function in standard form ||f(x)=a\log_c \big(b(x-h)\big)+k|| where |c>0|, |c \neq 1,| and |a| and |b| are non-zero

Domain

The domain is |(0,\infty).|

If |b>0|, the domain is |(h,\infty).|

If |b<0|, the domain is |(-\infty,h).|

Range

​The range is |\mathbb{R}.|

The range is |\mathbb{R}.|

|x|-Intercept

​It is |x=1.|

It is the value of |x| such that |f(x)=0.|

|y|-Intercept of function

No |y|-intercept

If it exists, it is the value of |f(0).|

Sign

If |0<c<1|, the function is positive on |(0,1]| and negative on the rest of its domain.

If |c>1|, the function is negative on |(0,1]| and positive on the rest of its domain.

According to the equation of the function.

Increasing

​If |c>1.|

If |c>1| and |a| and |b| have the same sign.

If |0<c<1| and |a| and |b| have opposite signs.

Decreasing

If ​|0<c<1.|

If |c>1| and |a| and |b| have opposite signs.
If |0<c<1| and |a| and |b| have the same sign.

Asymptote

​|x=0|

|x=h|​

Extrema

None or depending on the context​.

None or depending on the context.

Content
Corps

Determine the properties of the logarithmic function. ||f(x)=-\log_{1/2}(2(x+1))+3||

Columns number
2 columns
Format
50% / 50%
First column
Corps

It can be useful to plot a graph.

Second column
Image
Graph of an increasing logarithm function
Corps
  • The equation of the asymptote of the function is |x=-1.|

  • The domain of the function is |(-1, + \infty).|

  • The range of the function is |\mathbb{R}.|

  • To calculate the |x|-intercept of the function, replace |f(x)| with |0| and isolate |x.| ||\begin{align} 0 &= - \log_{1/2} (2(x+1)) +3\\-3 &= - \log_{1/2} (2(x+1))\\3 &= \log_{1/2} (2(x+1))\end{align}|| Next, use exponent laws to rewrite the function. ||\begin{align} \displaystyle \left( \frac{1}{2} \right)^3 &= 2(x+1)\\ \displaystyle \frac{1}{8} &= 2(x+1)\\ \displaystyle \frac{1}{16} &= x+1\\ \displaystyle \frac{1}{16}-1&=x\\ \displaystyle -\frac{15}{16}&=x \end{align}||

  • To calculate the |y|-intercept, replace |x| with |0.| ||\begin{align}f(0) &= - \log_{1/2} (2(0+1)) +3\\ f(0) &= - \log_{1/2} (2) + 3\\ f(0) &= -1(-1) + 3\\ f(0) &= 4\end{align}||

  • Sign: the function is negative on |(-1, -\frac{15}{16}]| and positive on |[-\frac{15}{16},+\infty).|

  • Variation: the function is increasing over its entire domain.

  • The function has no extrema.

Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No