Content code
m1178
Slug (identifier)
the-role-of-parameters-in-a-cosine-function
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
fonction cosinus
role des parametres a b h k
déphasage
périodique
étirement
déplacement
amplitude
point d'inflexion
forme canonique
dilatation
rétrécissement
fonction sinusoïdale
Content
Contenu
Corps

Adding the parameters |a,| |b,| |h,| and |k| to the basic function |f(x)=\cos(x)| results in what is called the standard form (also called the transformed form) of the cosine function.

Content
Corps

The standard form of a cosine function is: ||f(x)=a \cos\big(b(x-h)\big)+k|| where |a,| |b,| |h,| and |k| are real numbers that function as parameters.

Note: The parameters |a| and |b| are always non-zero.

Links
Title (level 2)
Animation for Manipulating Parameters
Title slug (identifier)
animation-for-manipulating-parameters
Contenu
Corps

Experiment with the parameters |a,| |b,| |h,| and |k| in the interactive animation to see their effects on the cosine function. Observe the changes that take place on the transformed curve (in green) compared to the base function (in black). Afterwards, keep reading the concept sheet to learn more about each of the parameters.

Corps

Title (level 2)
Analyzing Parameter |a|
Title slug (identifier)
parameter-a
Contenu
Title (level 3)
Vertical Scaling of the Curve by |a|
Title slug (identifier)
vertical-scale-factor-of-curve-a
Corps

When |{\mid}a{\mid}>1|

The larger the absolute value of the parameter |a|, the greater the amplitude of the cosine function.

Image
Graph
Corps

When |0< {\mid}a{\mid} < 1|

The smaller the absolute value of the parameter |a| (nearer |0|), the smaller the amplitude of the cosine function.

Title (level 3)
Reflection of the Function’s Graph With Respect to the |x|-axis
Title slug (identifier)
reflection-of-the-function-graph-around-the-x-axis
Corps

When |a| is positive |(a>0)|

The point |(h,k+a)| is a maximum of the curve and the function decreases after this point.

When |a| is negative |(a<0)|

The point |(h,k+a)| is a minimum of the curve and the function increases after this vertex.

Image
Graph illustrating a reflection against the x-axis of the cosine function
Title (level 2)
Analyzing Parameter |b|
Title slug (identifier)
parameter-b
Contenu
Title (level 3)
Horizontal Scaling of the Curve by |\dfrac{1}{b}|
Title slug (identifier)
a-horizontal-scale-factor-of-the-curve-1-b
Corps

When |{\mid}b{\mid} >1|

The larger the absolute value of the parameter |b|, the smaller the period and the smaller the distance between two maxima or minima of the function.

Image
Graphic
Corps

When |0< {\mid}b{\mid} <1|:

The smaller the absolute value of the parameter |b| (closer to |0|), the greater the period and the distance between two maxima or two minima of the function.

Content
Corps

A cosine function with the same value of |b|, but the opposite sign, superimposes onto the other function.

Image
Graph illustrating the parity of the cosine function
Title (level 2)
Analyzing Parameter |h|
Title slug (identifier)
parameter-h
Contenu
Title (level 3)
Horizontal Translation of the Whole Function
Title slug (identifier)
horizontal-translation-of-the-whole-function
Corps

The parameter |h| is responsible for the horizontal displacement of the curve. This is also called the phase shift in a sinusoidal function.

When |h| is positive |(h>0)|

The curve of the cosine function moves to the right.

When |h| is negative |(h<0)|

The curve of the cosine function moves to the left.

Image
Graph illustrating the phase shift in a cosine function when modifying the parameter h
Title (level 2)
Analyzing Parameter |k|
Title slug (identifier)
parameter-k
Contenu
Title (level 3)
Vertical translation of the whole function
Title slug (identifier)
vertical-translation-of-the-whole-function
Corps

When |k| is positive |(k>0)|

The cosine function moves upwards.

When |k| is negative |(k<0)|

The cosine function moves downwards.

Image
Graphic
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No