Content code
m1158
Slug (identifier)
the-role-of-parameters-in-an-absolute-value-function
Grades
Secondary V
Topic
Mathematics
Tags
paramètre
absolue
analyse du paramètre
analyse
graphique
responsable
analyse de la fonction valeur absolue
forme canonique de la valeur absolue
forme canonique de la fonction valeur absolue
fonction valeur absolue
valeur absolue
paramètres de la fonction valeur absolue
paramètre a
paramètre b
paramètre h
paramètre k
Content
Contenu
Corps

Adding the parameters |a,| |b,| |h,| and |k| to the basic function |f(x)={\mid}x{\mid}| results in the standard form (or transformed form) of the absolute value function.

Content
Corps

The standard form of the absolute value function is: ||f(x)=a {\mid}b(x-h){\mid} +\ k|| where |a,| |b,| |h,| and |k| are real numbers that act as parameters.

Note: The parameters |a| and |b| are always non-zero.
The point |(h,k)| corresponds to the vertex of the function.

Content
Corps

With a few manipulations, we obtain an equation with three parameters |(a, h, k)| by applying the following property:
|{\mid}x \times y{\mid} = {\mid}x{\mid} \times {\mid}y{\mid}.|

|f(x) = a {\mid}b(x-h){\mid} + k|
|f(x)= a {\mid}b{\mid}  {\mid}x - h{\mid} + k|
|f(x) = \mathbb{a} {\mid}x - h{\mid} + k| where |\mathbb{a} = a {\mid}b{\mid}|

Be careful! In the last equation, |\mathbb{a}| corresponds to the product of parameters |a| and |b.| Therefore, its effect is the equivalent of the combined effect of the two parameters.

Links
Title (level 2)
Animation for Manipulating Parameters
Title slug (identifier)
animation-for-manipulating-parameters
Contenu
Corps

Experiment with the parameters |\mathbb{a}|, |h,| and |k| in the interactive animation to see how they affect the absolute value function. Observe the changes that take place on the transformed curve (in black) compared to the base function (in blue). Use this opportunity to observe the effect of modifying the parameters on the properties of the function. Afterwards, read the concept sheet to learn more about each of the parameters.

Note: Simply use the equation |f(x)=\mathbb{a} {\mid}x - h{\mid} + k| since the parameter |b| is superfluous.

Corps

Title (level 2)
Analyzing Parameter |a|
Title slug (identifier)
analyzing-parameter-a
Contenu
Title (level 3)
A Vertical Scaling of the Curve by a Factor of |a|
Title slug (identifier)
vertical-scale-factor-of-curve-a
Corps

When |{\mid}a{\mid} > 1 |

The larger the absolute value of the parameter |a|, the closer the two branches of the graph of the absolute value function are to the |y|-axis since the curve stretches vertically. It looks like the graph’s opening narrows.

Image
Picture
Corps

When |0< {\mid}a{\mid} < 1 |

The smaller (closer to |0|) the parameter |a|, the more the two branches of the graph of the absolute value function collapse toward the |x|-axis. It looks like the graph’s opening becomes wider.

Image
Picture
Title (level 3)
A Reflection of the Function’s Graph Across the |x|-Axis
Title slug (identifier)
reflection-x
Corps

The parameter |a| is also responsible for the orientation of the graph of the absolute value function.

When |a| is positive |(a>0) |

The absolute value function’s graph opens upwards.

When |a| is negative |(a<0) |

The absolute value function’s graph opens downwards.

Image
Picture
Title (level 2)
Analyzing Parameter |b|
Title slug (identifier)
analyzing-parameter-b
Contenu
Title (level 3)
A Horizontal Scaling of the Curve by |\dfrac{1}{b}|
Title slug (identifier)
horizontal-scale
Corps

When |{\mid}b{\mid} > 1|

The larger the absolute value of the parameter |b|, the narrower the opening of the graph of the absolute value function.

Image
Picture
Corps

When |0< {\mid}b{\mid} < 1|

The smaller (nearer |0|) the parameter |b|, the wider the opening of the graph of the absolute value function.

Image
Picture
Title (level 2)
Analyzing Parameter |h|
Title slug (identifier)
analyzing-parameter-h
Contenu
Title (level 3)
A Horizontal Translation of the Whole Function
Title slug (identifier)
horizontal-translation
Corps

When |h| is positive |(h>0) |

The graph of the absolute value function moves to the right.

Image
Picture
Corps

When |h| is negative |(h<0) |

The graph of the absolute value function moves to the left.

Image
Picture
Title (level 2)
Analyzing Parameter |k|
Title slug (identifier)
analyzing-parameter-k
Contenu
Title (level 3)
A Vertical Translation of the Whole Function
Title slug (identifier)
vertical-translation
Corps

When |k| is positive |(k>0)|

The graph of the absolute value function moves upwards.

Image
Picture
Corps

When |k| is negative |(k<0)|

The graph of the absolute value function moves downwards.

Image
Picture
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No