Content code
m1568
Slug (identifier)
using-laws-logarithms
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
logarithme
étape
résolution
résolution équation
laws
Content
Contenu
Corps

To reduce (or simplify) logarithmic expressions, use the laws of logarithms.

Links
Title (level 2)
Simplifying Expressions Containing Logarithms
Title slug (identifier)
simplifying
Contenu
Content
Corps

Simplify the following expression to obtain an algebraic expression made up only of |\log 2|, |\log 3|, |\log 5,| and constants. ||\log 25 + \log 24 + \log \frac{1}{4} - \log 6 + \log 8 + \log 10 + \log 9|| Step 1

Note that the sixth term is equal to |1|, since the logarithm of |c| in base |c| is equal to |1|. So, ||\log 25 + \log 24 + \log \frac{1}{4} - \log 6 + \log 8 + 1 + \log 9||
Step 2

Using the quotient law of logarithms, simplify the third term. ||\log \frac{1}{4} = \log 1 - \log 4|| Since |\log 1 = 0|, the expression becomes: ||\log 25 + \log 24 - \log 4 - \log 6 + \log 8 + 1 + \log 9||
Step 3

The numbers |25|, |4|, |8|, and |9|, present in the first, third, fifth, and seventh terms, can be represented using a base raised to an exponent. So: ||\log 5^2 + \log 24 - \log 2^2 - \log 6 + \log 2^3 + 1 + \log 3^2||
Step 4

Using the power law of logarithms, put the exponents in front of each term. ||2\log 5 + \log 24 - 2\log 2 - \log 6 + 3\log 2 + 1 + 2\log 3||
Step 5

Using the product law of logarithms, decompose the argument of the second term (|24|) and the fourth term (|6|). ||2\log 5 + \log (3\times 2^3) - 2\log 2 - \log (2\times 3) + 3\log 2 + 1 + 2\log 3||
||2\log 5 + \log 3 + 3\log 2 - 2\log 2 - \log 2 - \log 3 + 3\log 2 + 1 + 2\log 3||
Step 6

Group together like terms. ||2\log 5 + 2\log 3 + 3\log 2 + 1||
This is the desired answer, but it is not the only possible way of rewriting the expression.

Content
Corps

Simplify the following expression: |3\ln x + 4\ln x - 2\ln x^3.|

Step 1

Use the power law for logarithms to rewrite the expression. The expression becomes: ||\ln x^3 + \ln x^4 - \ln x^{3\times 2}||
Step 2

Moving through the expression from left to right, use the product and quotient laws of logarithms. The expression becomes:
||\begin{align} \ln x^3 + \ln x^4 - \ln x^6 & = \ln x^3x^4 - \ln x^6\\ \ & = \ln x^7 - \ln x^6\\ \ & = \ln \frac{x^7}{x^6}\\ \ & = \ln x^1 \\ & = \ln x \end{align}||

Title (level 2)
Solving Equations Involving the Laws of Logarithms
Title slug (identifier)
solving
Contenu
Corps

Since exponential and logarithmic notation are closely related, solving an equation with an exponent or with a logarithm often requires switching from one form to the other.

In the case of an exponential equation, the presence of a variable in the exponent makes solving a bigger challenge. However, the properties and techniques used to solve an equation in general are still applicable.

Title (level 3)
Solving an Exponential Equation
Title slug (identifier)
exponential
Content
Corps

What is the value of |x| in the following equation? ||3\ 245 = 2\ 500 (1.056)^{4x}||
||\begin{align}
\dfrac{3\ 245}{\color{red}{2\ 500}} &= \dfrac{2\ 500}{\color{red}{2\ 500}} (1.056)^{4x} && \text{inverse operation} \\\\
1.298 &\ = 1.056^{4x} \\\\
\log_{1.056} 1.298 &\ = 4x && \text{definition of log} \\\\
\dfrac{\log_{10} 1.298}{\log_{10} 1.056} &\ = 4x && \text{change of base} \\\\
\dfrac{4.787}{\color{red}{4}} &\approx \dfrac{4x}{\color{red}{4}} && \text{inverse operation} \\\\
1.197 &\approx x \end{align}||

Title (level 3)
Solving a Logarithmic Equation
Title slug (identifier)
logarithmic
Corps

To solve a logarithmic equation, it is rarely enough to just change the base.

Content
Corps

What is the value of |x| in the following equation? ||2 \log_4 \ x - \log_4 \ (16x) = \log _4 \ 9 + 1||
||\begin{align}
2 \log_4 x - \log_4 (16x) &= \log_4 9 + 1 \\
2 \log_4 x - (\log_4 16 + \log_4 x) &= \log_4 9 + 1 && \text{log of a product} \\
2 \log_4 x - (2 + \log_4 x) &= \log_4 9 + 1 && \text{calculating the log} \\
2 \log_4 x - 2 - \log_4 x &= \log _4 9 + 1 && \text{distributive property} \\
\underbrace{2 \log_4 x - \log_4 x} - 2 &= \log_4 9 + 1 && \text{like terms} \\
\log_4 x -2 \color{red}{+2} &= \log_4 9 +1 \color{red}{+2} && \text{inverse operation} \\
\log_4 x \color{red}{- \log_4 9} &= \log_4 9 \color{red}{- \log_4 9} + 3 && \text{inverse operation} \\
\log_4 \left(\dfrac{x}{9}\right) &= 3 && \text{log of a quotient} \\
4^3 &= \dfrac{x}{9} && \text{definition of log} \\
64 \color{red}{\times 9} &= \dfrac{x}{9} \color{red}{\times 9} && \text{inverse operation} \\
576 &= x \end{align}||

Contenu
Corps

Pour valider ta compréhension des lois des logarithmes et des exposants de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Remove audio playback
No