When dividing two fractions, remember that dividing is the same as multiplying one fraction by the reciprocal of the other.
For example, to divide the fractions |\dfrac{1}{2}\div\dfrac{1}{3},| we follow these steps:
- We invert the numerator and denominator of the fraction on the right.
||\frac{1}{2}\div\frac{3}{1}||
- We change the division sign to a multiplication sign.
||\frac{1}{2}{\color{red}\times} \frac{3}{1}||
- We multiply the fractions.
||\frac{1}{2}\times \frac{3}{1} =\frac{3}{2}||
||\frac{2}{3}\div\frac{1}{9}=\frac{2}{3}\times\frac{9}{1}=\frac{2\times9}{3\times1}=\frac{18}{3}=6||
||\frac{4}{5}\div\frac{2}{3}=\frac{4}{5}\times\frac{3}{2}=\frac{4\times3}{5\times2}=\frac{12}{10}=\frac{6}{5}||
- When dividing 2 numbers with the same sign, the quotient will be positive.
- When dividing 2 numbers with opposite signs, the quotient will be negative.
When dividing mixed numbers, first convert the mixed numbers into fractions, and then perform the operation as explained above.
||4\frac{1}{3}\div\frac{2}{5}=\frac{13}{3}\div\frac{2}{5}=\frac{13}{3}\times\frac{5}{2}=\frac{65}{6}=10\frac{5}{6}||
||8\frac{1}{2}\div4\frac{1}{3} =\frac{17}{2}\div\frac{13}{3}=\frac{17}{2}\times\frac{3}{13} =\frac{51}{26}||
Pour valider ta compréhension des fractions de façon interactive, consulte la MiniRécup suivante :