Content code
m1433
Slug (identifier)
finding-the-equation-of-a-linear-function
Grades
Secondary II
Secondary III
Secondary IV
Topic
Mathematics
Tags
taux de variation
rate
variation
étape
affine
paramètre
recherche règle droite
règle droite
règle fonction affine
règle fonction linéaire
recherche règle fonction linéaire
recherche fonction affine
Content
Contenu
Corps

There are two distinct situations for finding the equation of a linear function.

Links
Title (level 2)
Finding the Equation of a Line from the Rate of Change and a Point
Title slug (identifier)
finding-equation-line-rate-change
Contenu
Content
Corps

To find the equation of a line from the rate of change and a point, follow these steps.

  1. In the equation |y=ax+b|, replace the parameter |a| by the rate of change given.

  2. In the same equation, replace |x| and |y| by the |(x,y)| coordinates of the given point.

  3. Isolate parameter |b| to find the value of the |y|-intercept.

  4. Write the equation of the line in the form |y=ax+b| with the values of the parameters |a| and |b|.

Content
Corps

What is the equation of the line that has a rate of change of |3.5| and that passes through the point |(-6,-28)|?

  1. Replace |a| with |3.5| in the equation of the line ||y = 3.5x + b||

  2. Replace |y| with |-28| and |x| with |-6| ||\begin{align} y &= 3.5x + b \\ -28 &= 3.5(-6) + b \end{align}||

  3. Isolate the parameter |b| ||\begin{align} -28 &= 3.5(-6) + b \\ -28 &= -21 + b \\ -28 \color{red}{+21} &= -21 \color{red}{+21} + b \\ -7 &= b \end{align}||

  4. Write the equation of the line with the parameters |a=3.5| and |b=-7| ||y = 3.5 x - 7||

Title (level 2)
Finding the Equation of a Line from Two Points
Title slug (identifier)
finding-equation-line-two-points
Contenu
Content
Corps

When looking for the equation of a line from the coordinates of two points, follow these steps.

  1. Determine the value of the rate of change using the following formula. ||a = \dfrac{\Delta y}{\Delta x} = \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}||

  2. In the equation |y=ax+b,| replace the parameter |a| by the rate of change determined in step 1.

  3. In this same equation, replace |x| and |y| by the |(x,y)| coordinates of one of the two points (choose one).

  4. Isolate the parameter |b| to find the value of the |y|-intercept.

  5. Write the equation of the line in the form |y=ax+b| with the values of the parameters |a| and |b.|

Content
Corps

What is the equation of the line that passes through the following points: |(3,-8)| and |(5,10)|?

  1. Determine the value of the rate of change |(a)| ||\begin{align} a = \dfrac{\Delta y}{\Delta x} &= \dfrac{y_2-y_1}{x_2-x_1} \\ &= \dfrac{10-(-8)}{5-3}\\ &=\dfrac{18}{2} \\ &=9 \end{align}||

  2. Replace parameter |a| with |9| in the equation of the line ||y=9x+b||

  3. Replace |x| and |y| with the |(x,y)| coordinates of one of the two points given

    Choose the point |(5,10).| Then replace |y| with |10| and |x| with |5.| ||\begin{align} y &= 9x + b \\ 10 &= 9(5) + b \end{align}||

  4. Isolate the parameter |b| ||\begin{align} 10 &= 9(5) + b \\ 10 &= 45 + b \\ 10 \color{red}{- 45} &= 45 \color{red}{- 45} +b \\ -35 &= b  \end{align}||

  5. Write the equation of the line with the parameters |a=9| and |b=-35| ||y = 9x -35||

Title (level 2)
Exercises
Title slug (identifier)
exercises
Title (level 2)
See also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No
Printable tool
Off