Content code
m1044
Slug (identifier)
laws-exponents
Parent content
Grades
Secondary III
Secondary IV
Secondary V
Topic
Mathematics
Tags
loi des exposants
propriété des exposants
exposant négatif
lois des exposants
propriété des racines carrées
Content
Contenu
Corps

As seen from their definitions, exponents and radicals are two closely related concepts which have more or less the same properties. It is very important to know and to master the properties of the exponents to succeed in solving the equations found in financial mathematics.

Links
Title (level 2)
Definitions of Exponents
Title slug (identifier)
definitions-exponents
Contenu
Content
Corps

​In the following definitions, it is important to keep in mind that
||\{a,b\} \subset \mathbb{R}\quad \text{and}\quad \{m,n\} \subset\mathbb{N}.||

Corps

Definitions

​Examples

​A positive integer exponent indicates the number of times the base appears in a multiplication.
||a^{m}=\underbrace {a\times a\times ...\times a\times a}_{m\ \text {times}}|| with |m>0|

​|2^{3}=2\times2\times2=8|

|\left(\dfrac{1}{2}\right)^{4}=\dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{16}|

Any base raised to the exponent |0| equals |1| (except if the base is |0|).
||a^{0}=1||

​|4^{0}=1|

|0^{0}\ \text{is undefined}|

Any base raised to an exponent of |1| equals the base itself.
||a^{1}=a||

​|25^{1}=25|

|\left(\dfrac{8}{3} \right)^{1}=\dfrac{8}{3}|

Any base raised to a negative exponent is equivalent to the inverse of the base raised to a positive exponent.
||\begin{align} a^{-m}&= \dfrac{1}{a^{m}}\\\\
\left(\dfrac{a}{b}\right)^{-m}&=\left(\dfrac{b}{a}\right)^{m}\end{align}||

​|2^{-4}=\dfrac{1}{2^{4}}|

|\left(\dfrac{2}{3}\right)^{-5}=\left(\dfrac{3}{2}\right)^{5}|

A base assigned a fraction exponent results in a radical root.
||a^{\dfrac{m}{n}}=\sqrt [n]{a^{m}}||

​|8^{\dfrac{3}{5}}=\sqrt [5]{8^{3}}|

|2^{\dfrac{1}{3}}=\sqrt [3]{2}|

Title (level 2)
Properties of the Exponents
Title slug (identifier)
properties-exponents
Contenu
Content
Corps

For the following properties, it is important to consider that
||\{a,b\} \subset \mathbb{R}\quad \text{and}\quad \{m,n\} \subset \mathbb{N}.||

Corps

In the following table, first the properties are defined and then examples are given. It is important to remember that an equality can be read from left to right as well as from right to left.
Transforming equalities in either direction is emphasized in the sections ahead.

Corps

​Properties

​Examples

If two powers with the same base are equal, then the exponents are equal.
||\text{If} \ a^{m}=a^{n} \ \text{then} \ m=n.||

​|8^{4}=8^{x}| therefore, |4=x.|

|\begin{align} 2^{x+1}=2^{3}\ \ \text{thus, }\ x+1 &=3\\\Rightarrow x&=2 \end{align}|

Multiplying powers with the same base:
When two powers with the same base are multiplied, the exponents are added.
||a^{m}\times a^{n}=a^{m+n}||

​|8^{3}\times 8^{5}\times 8^{-2}=8^{3+5+^-2}=8^{6}|

​Dividing powers with the same base:
When powers with the same base are divided, the exponents are subtracted.
||\dfrac{a^{m}}{a^{n}}=a^{m-n}\ \text{where} a\neq 0.||

|\dfrac{4^{5}}{4^{3}}=4^{5-3}=4^{2}|

Power of a product:
An exponent can be distributed over a multiplication enclosed by brackets.
||(ab)^{m}=a^{m}b^{m} ||

​|(2xy)^{3}=2^{3}x^{3}y^{3}|

​Power of a quotient:
An exponent can be distributed over a division enclosed in brackets.
||\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}} \ \text{where} b\neq 0.||

|\left(\dfrac{2}{3}\right)^{5}=\dfrac{2^{5}}{3^{5}}|

​Power of a power:
The exponents are multiplied when a power is raised to a new exponent.
||(a^{m})^{n}=a^{mn}||

​|(2^{3})^{3}=2^{3\times 3}=2^{9}|

|((3^{2})^{3})^{4}=3^{2\times 3\times 4}=3^{24}|

Content
Corps

These properties are also applicable for certain other number sets.

If |a \in \mathbb{R}_+| and |\{m,n\} \subset \mathbb{Q}|, then |(a^m)^{^{\Large{n}}} = a^{m\times n}.|
||\begin{align} \left(3^{\dfrac{1}{2}}\right)^{\dfrac{3}{5}} &= 3^{^{\dfrac{1}{2} \times \dfrac{3}{5}}} \\ &= 3^{^\dfrac{3}{10}}\end{align}||

Corps

When multiplying, pay close attention to the value of the exponent. If the exponents are the same, the multiplication can be simplified. Otherwise, the two terms cannot be multiplied.

Content
Corps

Possible to calculate the product (identical exponents)
||\begin{align} 4^\color{blue}{5} \times 3^\color{blue}{5} &= (4\times 3)^\color{blue}{5} \\
&= 12^\color{blue}{5} \end{align}||
Impossible to calculate the product (different exponents)
||\begin{align} 2 \times 1.1^3 &= 2^\color{red}{1} \times 1.1^\color{blue}{3} \\
&= 2^\color{red}{1} \times (1.1)^\color{blue}{3} \\
&= 2 \times (1.1)^\color{blue}{3} \end{align}||

Corps

As seen in the previous problem, brackets are useful for visually separating two exponential notations that cannot be multiplied.

So, |2 \times 1.1^3 \not= 2.2^3.| The equation remains |2 \times (1.1)^3.|

Title (level 3)
Examples of Solutions Involving a Single Property
Title slug (identifier)
examples-solutions-involving-single-property
Content
Corps

Example 1 (multiplying powers with the same base)
||\begin{align} &&0.96^{7}&= 0.96^2 \times 0.96^x\\
&&0.96^7 &= 0.96^{2+x} \\
&\Rightarrow &7 &= 2+x \\
&&5 &= x \end{align}||
Example 2 (dividing powers with the same base)
||\begin{align} && \dfrac{1.15^4}{1.15^2} &= 1.15^x \\
&& 1.15^{4-2}&= 1.15^x \\
&& 1.15^2 &= 1.15^x \\
&\Rightarrow &2 &= x \end{align}||
Example 3 (power of a product)
||\begin{align} && 1.2^2 \times 1.4^2 &= x^2 \\
&\Rightarrow &(1.2 \times 1.4)^2 &= x^2 \\
&& 1.68 ^2 &= x^2 \\
&\Rightarrow &1.68 &= x \end{align}||
Example 4 (power of a product)
||\begin{align} &&1.5^3 &= 8 \times 0.75^x \\
&&(2 \times 0.75)^3 &= 8 \times 0.75^x \\
&\Rightarrow & 2^3 \times 0.75^3 &= 8 \times 0.75^x \\
&& 8 \times 0.75^3 &= 8 \times 0.75^x \\
&& 0.75^3 &= 0.75^x \\
&\Rightarrow &3 &= x \end{align}||
Example 5 (power of a power)
||\begin{align}
&&0.7^{2x} &= 0.49^3 \\
&&(\color{blue}{0.7^2})^x &= 0.49^3 \\
&&\color{blue}{0.49}^x &= 0.49^3 \\
&\Rightarrow &x &= 3 \end{align}||

Title (level 3)
Example of a Solution Involving Several Properties
Title slug (identifier)
example-solution-involving-several-properties
Corps

Follow these steps for solving equations.

Content
Corps
  1. Isolate |x| as an exponent.

  2. Find equivalent bases.

  3. Obtain powers with the same bases on each side.

  4. Compare the exponents.

Corps

The strategy behind this procedure is to use the properties of the exponents to obtain bases with equivalent values. The components can then be compared directly.

Content
Corps

Solve the following equation.
||500 (1.4)^{2+x} = 2.45 (28)^2||

  1. Isolate |x| as an exponent

||\begin{align} 500 \color{blue}{(1.4)^{2+x}} &= 2.45 (28)^2 \\
500 \times \color{blue}{1.4^2 \times 1.4^x} &= 2.45 (28)^2 && \text{product of powers} \\
500 \times 1.96 \times 1.4^x &= 2.45 (28)^2 \\
980 (1.4)^x &= 2.45 (28)^2 \end{align}||

  1. Find equivalent bases

||\begin{align}
980 (1.4)^x &= 2.45 (28)^2 \\
980 (\color{blue}{1.4})^x &= 2.45 (20 \times \color{blue}{1.4})^2 && \text{equivalent bases}\\
980 (\color{blue}{1.4})^x &= 2.45 (20)^2 \times (\color{blue}{1.4})^2 &&\text{power of a product} \\ \end{align}||

  1. Obtain powers with the same bases on each side

||\begin{align}
980 (1.4)^x &= 2.45 (20)^2 \times (1.4)^2 \\
980 (1.4)^x &= 2.45 \times 400 \times (1.4)^2 \\
\dfrac{980 (1.4)^x}{\color{red}{980}} &= \dfrac{980 (1.4)^2}{\color{red}{980}} \\
1.4^x &= 1.4^2 \end{align}||

  1. Compare the exponents

||\begin{align}
&&1.4^x &= 1.4^2 \\
&\Rightarrow & x &= 2 \end{align}||

Corps

If it is impossible to find the same base for each power, you can use logarithms. Refer to the concept of solving equations involving the laws of logarithms if needed.

Title (level 3)
Other Examples
Title slug (identifier)
other-examples
Corps

These examples use the properties and laws of exponents.

Content
Corps

Here is a technique that can be used to simplify an exponential expression.
||\begin{align} (\color{red}{\sqrt [3]{3^{4}}}\times 5^{2})\div \left(\left(\dfrac{1}{5}\right)^{3}\times 3^{^{\frac{1}{3}}}\right) &= (\color{red}{3^{^{\frac{4}{3}}}}\times 5^{2})\div \left(\left(\color{blue}{\dfrac{1}{5}}\right)^{\color{blue}{3}}\times 3^{^{\frac{1}{3}}}\right)\\\\ &= (3^{^{\frac{4}{3}}}\times 5^{2})\div \left(\color{blue}{5^{\text{-}3}}\times 3^{^{\frac{1}{3}}}\right)\\ &= \dfrac{3^{^{\frac{4}{3}}}\times 5^{2}}{\color{blue}{5^{\text{-}3}}\times \color{red}{3^{^{\frac{1}{3}}}}}\\\\ &= \dfrac{3^{^{\frac{4}{3}}}\times 5^{2}}{​\color{red}{3^{^{\frac{1}{3}}}}\times \color{blue}{5^{\text{-}3}}}\\\\ &= \dfrac{3^{^{\frac{4}{3}}}}{3^{^{\frac{1}{3}}}}\times \dfrac{5^{2}}{5^{\text{-}3}}\\\\ ​&=3^{^{\frac{4}{3}\text{-}\frac{1}{3}}}\times 5^{2\text{-}^\text{-}3}\\[4pt] &=3\times 5^{5}\end{align}||

Corps

The next example has numbers and variables.

Content
Corps

Simplify the following expression and give an answer where the exponents are positive.
||\begin{align}\left(\dfrac{2^{^{\frac{1}{4}}}xy\times \color{red}{4} ​y}{\color{blue}{4} x^{2}y^{5}}\right)^{\!2}
&=\left(\dfrac{2^{^{\frac{1}{4}}}xy\times \color{red}{2^{2}}y}{\color{blue}{2^{2}}x^{2}y^{5}}\right)^{\!2} && \text{change to base 2}\\\\
&= \dfrac{2^{^{\frac{1}{2}}}x^{2}y^{2}\times 2^{4}y^{2}}{2^{4}x^{4}y^{10}} && \text{distribute the exponent 2}\\\\
&=\dfrac{2^{^{\frac{1}{2}+\,\Large{4}}}x^{2}y^{2+2}}{2^{4}x^{4}y^{10}}&& \text{+ the exponents with the same base}\\\\
&=\dfrac{2^{^{\frac{9}{2}}}x^{2}y^{4}}{2^{4}x^{4}y^{10}}\\\\
&=2^{^{\frac{9}{2}-\,\Large{4}}}x^{2-4}y^{4-10}&& \text{- the exponents with the same base}\\\\
&= 2^{^{\frac{1}{2}}}x^{-2}y^{-6}&&\\\\
&= \dfrac{2^{^{\frac{1}{2}}}}{x^{2}y^{6}}&&\text{transform the - exponents}\\\\
&= \dfrac{\sqrt{2}}{x^{2}y^{6}}&&\text{fractional exponent in radical form}\end{align}||

Corps

Pour valider ta compréhension des lois des exposants de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Corps

Pour valider ta compréhension des lois des logarithmes et des exposants de façon interactive, consulte plutôt la MiniRécup suivante :

MiniRécup
Title (level 2)
Properties of Radicals (Fractional Exponent)
Title slug (identifier)
properties-radicals
Contenu
Content
Corps

For the following properties, it is important to remember that
||a^{^{\large{\frac{m}{n}}}} = \sqrt[n]{a^m}|| ||\text{where}\quad a \in \mathbb{R},\quad m \in \mathbb{Z},\quad \text{and}\quad n \in \mathbb{N}^*.||

Corps

​Properties

​Examples

Multiplying radicals of the same index:
The product of the radical of two numbers with the same index |n| is equivalent to the |n^{th}| root of the product of these numbers.
||\sqrt[n]{a}\times\sqrt[n]{b} = \sqrt[n]{a \times b}||


​|\sqrt[4]{8}\times\sqrt[4]{7} = \sqrt[4]{8\times 7}|

​Dividing radicals of the same index:
The quotient of two numbers with the same index |n| is equivalent to the |n^{th}| root of the quotient of these numbers.
||\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\dfrac{a}{b}}||


|\dfrac{\sqrt[3]{2}}{\sqrt[3]{9}} = \sqrt[3]{\dfrac{2}{9}}|

​Factoring radical:
The radicand can be factored in order to simplify the writing of a radical.
||\sqrt[n]{a^n b} = a \sqrt[n]{b}||

||\begin{align} \sqrt[3]{108} &= \sqrt[3]{27 \times 4} \\ &= \sqrt[3]{27} \times\sqrt[3]{4}\\
&=\sqrt[3]{3^3} \times\sqrt[3]{4}\\
&= 3\sqrt[3]{4} \end{align}||

Title (level 3)
Examples of Applications Involving the Properties of Radicals
Title slug (identifier)
applied-examples
Corps

In mathematics, the properties of radicals are mainly used when analyzing the square root function, rationalizing a fraction, and finding the coordinates of points in the unit circle.

Content
Corps

Example 1
Simplify |\sqrt{12}.|
||\begin{align}\sqrt{12} &= \sqrt{4 \times 3} \\
&= \sqrt{4} \times \sqrt{3}\\
&=2\sqrt{3}\end{align}||

Example 2
Simplify |\sqrt[3]{16x^4y^2}.|
||\begin{align} \sqrt[3]{\color{blue}{16}\color{red}{x^4}\color{magenta}{y^2}}&= \sqrt[3]{\color{blue}{8 \times 2} \color{red}{ x^3 \times x^1} \times\color{magenta}{y^2}}\\
&=\sqrt[3]{\color{blue}{8}\color{red}{x^3}} \times \sqrt[3]{\color{blue}{2}\color{red}{x^1}\color{magenta}{y^2}}\\
&=\sqrt[3]{\color{blue}{8}} \times\sqrt[3]{\color{red}{x^3}} \times\sqrt[3]{\color{blue}{2}\color{red}{x}\color{magenta}{y^2}}\\
&= \color{blue}{2}\color{red}{x}\sqrt[3]{\color{blue}{2}\color{red}{x}\color{magenta}{y^2}}\\
&= \color{blue}{2}\color{red}{x}({\color{blue}{2}\color{red}{x}\color{magenta}{y^2}})^{^{\frac{1}{3}}}\end{align}||​

Example 3
Simplify |\sqrt{\dfrac{36x^3y^4}{5z^6}}.|
||\begin{align}\sqrt{\dfrac{36x^3y^4}{5z^6}}
&=\dfrac{\sqrt{\color{blue}{36}\color{red}{x^3}\color{magenta}{y^4}}}{\sqrt{5z^6}}\\\\
&=\dfrac{\sqrt{\color{blue}{36}\color{red}{x^2\times x}\color{magenta}{y^4}}}{\sqrt{5z^6}}\\\\
&=\dfrac{\sqrt{\color{blue}{36}\color{red}{x^2}\color{magenta}{y^4}}\times\sqrt{\color{red}{x}}}{\sqrt{z^6}\times\sqrt{5}}\\\\
&=\dfrac{\color{blue}{6}\color{red}{x}\color{magenta}{y^2}\times\sqrt{\color{red}{x}}}{z^3\times\sqrt{5}}\\\\
&=\dfrac{\color{blue}{6}\color{red}{x}\color{magenta}{y^2}\times\sqrt{\color{red}{x}}}{z^3\times\sqrt{5}} \times\dfrac{\sqrt{5}}{\sqrt{5}}\\\\​​
&=\dfrac{\color{blue}{6}\color{red}{x}\color{magenta}{y^2}\times\sqrt{\color{red}{x}}\times \sqrt{5}}{z^3\times \sqrt{5}\times \sqrt{5}} \\\\​
&=\dfrac{\color{blue}{6}\color{red}{x}\color{magenta}{y^2}\times\sqrt{\color{red}{x}\times5}}{z^3\times\sqrt{5\times5}} \\\\​
&=\dfrac{\color{blue}{6}\color{red}{x}\color{magenta}{y^2}\times\sqrt{5\color{red}{x}}}{z^3\times\sqrt{25}} \\\\​
&=\dfrac{\color{blue}{6}\color{red}{x}\color{magenta}{y^2}\sqrt{5\color{red}{x}}}{5z^3}\end{align}​||

Title (level 2)
Exercise
Title slug (identifier)
exercises
Contenu
Contenu
Remove audio playback
No