Content code
m1017
Slug (identifier)
number-positions-and-values
Parent content
Grades
Secondary I
Secondary II
Equivalent file in the opposite grade group
Topic
Mathematics
Tags
position
ordre
nombres
notation exponentielle
dizaine
values
décomposition
unités groupées
unités non regroupées
centaine de milliard
dizaine de milliard
unité de milliard
centaine de million
dizaine de million
unité de million
centaine de mille
dizaine de mille
unité de mille
centaine
unité
dixième
centième
millième
dizaine de millième
centaine de millième
millionième
Content
Contenu
Corps

When writing a number, each digit has a specific place or position linked to a value. This value is called the place value. As we write numbers in base |10,| each value associated with the positions is, in fact, a power of |10.|

Links
Title (level 2)
Place Values of Natural and Integer Numbers
Title slug (identifier)
place-values-whole-numbers
Contenu
Corps

Here is a table showing the main values corresponding to the position of the number. This is useful for understanding the place value of whole and integer numbers.

Corps

Name of the position

Value

Order of magnitude

Hundred billions

|100\ 000\ 000\ 000|

Billions

Ten billions

|10\ 000\ 000\ 000|

Billions

|1\ 000\ 000\ 000|

Hundred millions

|100\ 000\ 000|

Millions

Ten millions

|10\ 000\ 000|

Millions

|1\ 000\ 000|

Hundred thousands

|100\ 000|

Thousands

Ten thousands

|10\ 000|

Thousands

|1\ 000|

Hundreds

|100|

Ones 

Tens

|10|

Ones 

|1|

Corps

Here is an example. The table below describes the different positions and place values in the following whole number. ||42\:567\:123||

Corps

Number

|4|

|2|

|5|

|6|

|7|

|1|

|2|

|3|

Position

Ten millions

Millions

Hundred thousands

Ten thousands

Thousands

Hundreds

Tens

Ones

Place value

|\small 4 \times 10\:000\:000 \\ \small =\\ \small 40\:000\:000|

|\small 2 \times 1\:000\:000 \\ \small =\\ \small 2\:000\:000|​

|\small 5 \times 100\:000\\ \small =\\ \small 500\:000|

|\small 6 \times 10\:000 \\ \small =\\ \small 60\:000|

|\small 7 \times 1\:000 \\ \small =\\ \small 2\:000|

|\small 1 \times 100 \\ \small = \\ \small 100|

|\small 2\times 10 \\ \small = \\ \small 20|

|\small 3\times 1 \\ ​\small = \\ \small ​3|​

Corps

For whole and natural numbers, the smallest place value is always the one. ​

Content
Corps

For each shift by one position to the left, the value is |10| times larger than the previous one. This means the place value is multiplied by |10| with each shift to the left.

On the other hand, each change of a position to the right means the position’s value is |10| times smaller than the previous one. This means the place value is divided by |10| with each shift to the right.

Corps

Exponential notation can be used to simplify writing if there are a series of multiplications by the same quantity.

Content
Corps

​In the number |75 \: 489|, the place value of the number 7 is: ||7 \times 10 \: 000 = 70 \: 000||
Use exponential notation to get a simpler equivalent.
||\begin{align} 70 \: 000 &= 7 \times 10 \: 000 \\
&= 7 \times 10 \times 10 \times 10 \times 10 \\
&= 7 \times \underbrace{\color{blue}{10 \times 10 \times 10 \times 10}}_{\color{red}{4 \ \text{times}}} \\
&= 7 \times \color{blue}{10}^\color{red}{4} \end{align}||

Corps

Exponential notation can be used for any place value.

Title (level 2)
Place Value of Decimal Numbers
Title slug (identifier)
place-values-decimal-numbers
Contenu
Corps

The place values of decimal numbers are similar to those of whole numbers. The only difference is the addition of positions to the right of the decimal point. The decimal point is what separates the whole part from the decimal part.

The following table represents the main values associated with the positions of different digits in decimals.

Corps

Position Name

Value

Order of Magnitude

Hundred Billions

|100\ 000\ 000\ 000|

Billions

Ten Billions

|10\ 000\ 000\ 000|

Billions

|1\ 000\ 000\ 000|

Hundred Millions

|100\ 000\ 000|

Millions

Ten millions

|10\ 000\ 000|

Millions

|1\ 000\ 000|

Hundred Thousands

|100\ 000|

Thousands

Ten Thousands

|10\ 000|

Thousands

|1\ 000|

Hundreds

|100|

Ones

Tens

|10|

Ones

|1|

Decimal Point

.

Separator

Tenths

|0.1| or |\dfrac{1}{10}|

For the decimal part of a number, each position corresponds to an order of magnitude.
 
Ex: tenths, hundredths, etc.

Hundredths

|0.01| or |\dfrac{1}{100}|

Thousandths

|0.001| or |\dfrac{1}{1\,000}|

Ten thousandths

|0.000\,1| or |\dfrac{1}{10\,000}|

Hundred thousandths

|0.000\,01| or |\dfrac{1}{100\,000}|

Millionths

|0.000\,001| or |\dfrac{1}{1\,000\,000}|

Corps

Here is an example. The table below describes the different positions and place values ​​in the following decimal number. ||54\:782 913||​

Corps

Number

|5|

|4|

|7|

|8|

|2|

|\Large .|

|9|

|1|

|3|

Position

Ten thousands

Thousands

Hundreds

Tens

Ones

 

Tenths

Hundredths

Thousandths

Place value

|\small 5 \times 10\:000 \\ \small = \\ \small 50\:000|

|\small 4\times 1\:000 \\ \small = \\ \small 4 \: 000|

|\small 7\times 100 \\ \small = \\ \small 700|

|\small 8\times 10 \\ \small = \\ \small 80|

|\small 2\times 1 \\ \small = \\ \small 2|

 

|\small 9\times 0.1 \\ \small = \\ \small 0.9|

|\small 1\times 0.01 \\ \small = \\ \small 0.01|

|\small 3\times 0.001 \\ \small = \\ \small 0.003|

Corps

As mentioned previously, each decimal place value can be represented by a fraction.

Content
Corps

For example, the value of the hundredth position corresponds to one over one hundred. ||0.01=\dfrac{1}{100}||

Corps

Just like with natural numbers and integers, exponential notation can be used to simplify the writing of the place value of the decimal portion.

Content
Corps

In the number |75.489,| the place value of the digit |9| is: ||9 \times 0.001 = 0.009||
Here is the equivalent with exponential notation. ||\begin{align} 0.009 &= 9 \times 0.001 \\
&=9 \times \frac{1}{1\:000} \\
&= 9 \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}\\
&= 9 \times \underbrace{\color{blue}{\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}}}_{\color{red}{3 \ \text{times}}} \\
&= 9 \times \frac{\color{blue}{1}}{\color{blue}{10}^\color{red}{3}} \\
&= 9 \times \color{blue}{10}^\color{red}{\text{-}3}\end{align}||

Corps

Exponential notation can be used for any place value.

Title (level 2)
Exercise
Title slug (identifier)
exercise
Contenu
Contenu
Largeur de l'exercice
720
Hauteur de l'exercice
540
Remove audio playback
No
Printable tool
Off