Content code
m1474
Slug (identifier)
the-orthogonal-projection-of-a-vector
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
vector
projection
norme
scalar
components
projection orthogonale
Content
Contenu
Corps

In addition to comparing the magnitudes (norms) of different vectors, it is possible to consider their positions relative to each other. We will focus on the orthogonal projection of vectors.

Links
Content
Corps

Given two vectors, |\overrightarrow{u}| and |\overrightarrow{v},| the vector |\overrightarrow{u}_{\overrightarrow{\large v}}| is the orthogonal projection of |\overrightarrow{u}| on |\overrightarrow{\large v}.| The origin of the vector projection is the same as that of the vectors |\overrightarrow{u}| and |\overrightarrow{v}.| The tip of the vector projection coincides with the perpendicular line drawn from the tip of |\overrightarrow {u}| to |\overrightarrow{v}.|

The terms orthogonal projection and vector projection are interchangeable.

Image
Image
Corps
  • The word orthogonal indicates that the projection is made at a 90° angle.

  • |\overrightarrow{u}_{\overrightarrow{\Large v}}| is parallel to |\overrightarrow{v}.|

  • Orthogonally projecting the zero vector is not possible.

Corps

There are three possible situations when orthogonally projecting a vector.

Corps

Acute angle

Obtuse angle

Right angle

Title (level 2)
The Components of a Vector Projection
Title slug (identifier)
projection-components
Contenu
Corps

There is a formula for calculating the components of a vector projection.

Content
Corps

Given |\overrightarrow{u}| and |\overrightarrow{v}|, we have:
||\overrightarrow{u}_{\overrightarrow{\Large v}} = \dfrac{\overrightarrow{u} \cdot \overrightarrow{v}}{\mid \mid \overrightarrow{v} \mid \mid ^2} \overrightarrow{v}||

Corps

Despite the rather complex appearance of the fraction |\dfrac{\overrightarrow{u} \cdot \overrightarrow{v}}{\mid \mid \overrightarrow{v} \mid \mid ^2},| it is ultimately a simple scalar. The proof of this formula will be shown after the following example.

Content
Corps

Let the vectors be |\overrightarrow{u}=(2,3)| and |\overrightarrow{v}=(1,-2)|. Determine the components of |\overrightarrow{u}_{\overrightarrow{\Large v}}|.

  1. Calculate the dot product ||\begin{align} \overrightarrow{u} \cdot \overrightarrow{v} &= (2,3) \cdot (1,-2) \\
    &= 2 \times 1 + 3 \times -2 \\
    &= -4\end{align}||

  2. Calculate the magnitude (norm) ||\begin{align} \mid \mid \overrightarrow{v} \mid \mid ^2 &= \left(\sqrt{1^2+(-2)^2}\right)^2\\
    &=5\end{align}||

  3. Apply the formula ||\begin{align} \overrightarrow{u}_{\overrightarrow{\Large v}}&=\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\mid \mid \overrightarrow{v} \mid \mid ^2}\ \overrightarrow{v} \\
    &= \frac{-4}{5}\ \overrightarrow{v}\\
    &= \frac{-4}{5}\ \big(1,-2\big)\\
    &=​ \left( \frac{-4}{5},\frac{8}{5} \right)\end{align}||

    Once again, use the Cartesian plane to represent everything.

Image
Orthogonal projection of the vector u onto vector v
Content
Corps

To prove the formula for calculating the components of a vector projection, see the following diagram.

Image
Orthogonal projection of the vector u onto the vector v
Corps
  1. It is clear that ||\overrightarrow{u}_{\overrightarrow{\Large v}} \parallel \overrightarrow{v}|| 

  2. As the two vectors are parallel, there must be a scalar |k| such that: ||\overrightarrow{u}_{\overrightarrow{\Large v}} = k \overrightarrow{v}|| 

  3. Projecting orthogonally (at 90°), we have that ||(\overrightarrow{u}-\overrightarrow{u}_\overrightarrow{\Large v}) \perp \overrightarrow{v}||

  4. Using the equation obtained in step 2, substitute |\overrightarrow{u}_{\overrightarrow{\Large v}}| par |k\overrightarrow{v}.|
    The result is: ||(\overrightarrow{u}-k\overrightarrow{v}) \perp \overrightarrow{v}||

  5. Two perpendicular (orthogonal) vectors have a dot product of zero. ||(\overrightarrow{u}-k\overrightarrow{v})\cdot \overrightarrow{v}=0||

  6. Apply the distributive property of the dot product. ||\overrightarrow{u} \cdot \overrightarrow{v} - k\overrightarrow{v} \cdot \overrightarrow{v}=0||

  7. Isolate |k|. ||k = \displaystyle \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}}||

  8. We use the fact that: ||\overrightarrow{v} \cdot \overrightarrow{v} = \mid \mid \overrightarrow{v} \mid \mid ^2||
    Therefore, ||k= \displaystyle \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\mid \mid \overrightarrow{v} \mid \mid ^2}||

  9. By substituting |k| into step 2, we obtain the desired result. ||\overrightarrow{u}_{\overrightarrow{\Large v}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\mid \mid \overrightarrow{v} \mid \mid ^2} \overrightarrow{v}||

Title (level 2)
The Magnitude of a Vector Projection
Title slug (identifier)
projection-magnitude
Contenu
Corps

It often happens that you only need to know the magnitude (norm) of the projected vector, not its components.

Content
Corps

||{\parallel}\overrightarrow{u}_{ \overrightarrow{\Large v}}{\parallel} = {\parallel}\overrightarrow{u}{\parallel} \cos \theta||​​where

|\overrightarrow{u}_{\overrightarrow{\Large v}}| is the vector projection
|\overrightarrow{v}| is the vector on which |\overrightarrow{u}| is projected 
|\theta| is the acute angle between |\overrightarrow {u}| and |\overrightarrow{v}|

Image
Image
Content
Corps

Let |{\parallel}\overrightarrow{u}{\parallel} = 5,|  |{\parallel}\overrightarrow{v}{\parallel} = 3| and |\theta = 35^\circ​|. Determine |{\parallel}\overrightarrow{u}_{\overrightarrow{\Large v}}{\parallel}.|

  1. Calculate the magnitude of |\overrightarrow {u}|
    In this problem, the magnitude of the vector is already given. ||{\parallel}\overrightarrow{u}{\parallel} = 5||

  2. Calculate |\theta|
    Again, this measurement is provided in the problem. ||\theta = 35^\circ||

  3. Apply the formula ||\begin{align} {\parallel}\overrightarrow{u}_{ \overrightarrow{\Large v}}{\parallel} &= {\parallel}\overrightarrow{u}{\parallel} \cos \theta\\
    &= 5 \cos 35^\circ \\
    &\approx 4.1 \end{align}||

  4. Interpret the answer
    The magnitude of |\overrightarrow  {u}_\overrightarrow{v}| is about |4.1| units.

    Note: The magnitude of the vector |\overrightarrow{v}| did not contain any necessary information in this problem.

Contenu
Corps

Pour valider ta compréhension à propos des vecteurs de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Remove audio playback
No