Content code
m1302
Slug (identifier)
the-properties-of-vector-operations
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
vector
composantes du vecteur
components
distributivité
chasles
adding vectors
substracting vectors
scalar
scalar product
multiplier des vections
propiétés des vecteurs
vector base
linear combinations
Content
Title (level 2)
Commutative Property of Vector Addition
Title slug (identifier)
commutative-property-of-vector-addition
Contenu
Image
Vector
Corps

This property can be proven with the following formula. ||\begin{align} \overrightarrow{u} + \overrightarrow{v} &= \overrightarrow{AB} + \overrightarrow{BC} \\
&= \overrightarrow{AD} +  \overrightarrow{DC}\\
&=\overrightarrow{v} + \overrightarrow{u}\end{align}||

Title (level 2)
Associative Property of Vector Addition
Title slug (identifier)
associative-property-of-vector-addition
Contenu
Corps

||\color{Red}{\overrightarrow{u}+(\overrightarrow{v}+\overrightarrow{w}) = (\overrightarrow{u}+\overrightarrow{v})+\overrightarrow{w}}||This property can be proven by using vectors |\overrightarrow{AB}, \overrightarrow{BC}| and |\overrightarrow{CD}| and Chasles' relation. ||\begin{align}(\overrightarrow{AB} + \overrightarrow{BC})+\overrightarrow{CD} &= \overrightarrow{AC}+\overrightarrow{CD} \\
&= \overrightarrow{AD}\end{align}||A similar calculation can be performed by moving the parentheses.||\begin{align} \overrightarrow{AB} + (\overrightarrow{BC}+\overrightarrow{CD}) &= \overrightarrow{AB}+\overrightarrow{BD} \\
&= \overrightarrow{AD}\end{align}||Thus, we obtain the associative property.

Title (level 2)
Identity Elements
Title slug (identifier)
identity-elements
Contenu
Corps

Additive identity:||\color{Red}{\overrightarrow{u}+\overrightarrow{0}=\overrightarrow{u}}||The components of the vector |\overrightarrow{u}| are |(a,b)| and the components of the |\overrightarrow{0}| vector are |(0,0)|.

Thus: ||\begin{align} \overrightarrow{u} + \overrightarrow{0} &= (a,b)+(0,0)\\
&= (a+0,b+0)\\
&=(a,b) \\
&= \overrightarrow{u}\end{align}||

Multiplicative identity: ||\color{Red}{1\overrightarrow{u}=\overrightarrow{u}}||The components of the vector |\overrightarrow{u}| are |(a,b)|.

Therefore: ||\begin{align}1 \times \overrightarrow{u}&=1 \times (a,b) \\
&= (1a,1b) \\
&=(a,b) \\
&= \overrightarrow{u}\end{align}||

Title (level 2)
Opposite
Title slug (identifier)
opposite
Contenu
Corps

||\color{Red}{\overrightarrow{u}+(-\overrightarrow{u})=\overrightarrow{0}}||
The components of the vector |\overrightarrow{u}| are |(a,b)| and the components of the vector |-\overrightarrow{u}| are |(-a,-b)|.

Then: ||\begin{align}\overrightarrow{u} + (-\overrightarrow{u})&=(a,b)+(-a,-b) \\
&= (a-a,b-b) \\
&= (0,0) \\
&= \overrightarrow{0}\end{align}||

Title (level 2)
Associative Property of Scalar Multiplications
Title slug (identifier)
associative-property-of-scalar-multiplication
Contenu
Corps

||\color{Red}{k(c\overrightarrow{u})=(kc)\overrightarrow{u}}||
The components of the vector |\overrightarrow{u}| are |(a,b)|.

So: ||\begin{align}k(c \overrightarrow{u}) &= k(c(a,b))\\
&=k(ca,cb)\\
&=(kca,kcb)\\
&=(kc)(a,b) \\
&= (kc)\overrightarrow{u}​\end{align}||

Title (level 2)
Distributive Property of Vector Addition
Title slug (identifier)
distributive-property-of-vector-addition
Contenu
Corps

||\color{Red}{k(\overrightarrow{u}+\overrightarrow{v})=k\overrightarrow{u}+k\overrightarrow{v}}||
The components of the vector |\overrightarrow{u}| are |(a,b)| and the components of the vector |\overrightarrow{v}| are |(c,d).|

Then:||\begin{align}k(\overrightarrow{u}+\overrightarrow{v}) &= k((a,b)+(c,d)) \\
&= k(a+c,b+d) \\
&= (k(a+c),k(b+d))\\
&=(ka+kc,kb+kd) \\
&= (ka,kb)+(kc,kd)\\
&=k\overrightarrow{u}+k\overrightarrow{v}\end{align}||

Title (level 2)
Distributive Property of Scalar Additions
Title slug (identifier)
distributive-property-of-scalar-addition
Contenu
Corps

||\color{Red}{(k+c)\overrightarrow{u}=k\overrightarrow{u}+c\overrightarrow{u}}||
The components of the vector |\overrightarrow{u}| are |(a,b).|

Thus:||\begin{align} (k+c)\overrightarrow{u} &=(k+c)(a,b) \\
&=((k+c)a,(k+c)b) \\
&= (ka+ca,kb+cb) \\
&= (ka,kb)+(ca+cb)\\
&=k(a,b)+c(a,b) \\
&= k\overrightarrow{u}+c\overrightarrow{u}\end{align}||

Title (level 2)
Chasles’ Relation
Title slug (identifier)
chasles-relation
Contenu
Corps

In this relation, |A|, |B|, and |C| represent points in the Cartesian plane.||\color{Red}{\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}}|| ​

Image
Cartesian plane
Title (level 2)
Distributive Property of Scalar Products by Vector Addition
Title slug (identifier)
distributive-property-of-scalar-products-over-addition
Contenu
Corps

||\color{Red}{ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}}||

Let |\overrightarrow{u}=(a,b)|, |\overrightarrow{v}=(c,d)| et |\overrightarrow{w}=(e,f)|.

Then:
||\begin{align}\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) &= (a,b) \cdot ((c,d)+(e,f))\\
&= (a,b) \cdot (c+e,d+f) \\
&=(a(c+e)+b(d+f))\\
&=(ac+ae+bd+bf)\\
&=(ac+bd)+(ae+bf) \\
&= (a,b) \cdot (c,d) + (a,b) \cdot (e,f)\\
&= \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}\end{align}||

Title (level 2)
Associative Property of Scalars in Scalar Products
Title slug (identifier)
associative-property-of-scalars-in-scalar-products
Contenu
Corps

Let |\overrightarrow{u}=(a,b)|, |\overrightarrow{v}=(c,d)| be vectors, and |k_1| and |k_2|, scalars.||\color{Red}{k_1 \overrightarrow{u} \cdot k_2 \overrightarrow{v}=(k_1k_2)\overrightarrow{u} \cdot \overrightarrow{v}}||

||\begin{align}k_1 \overrightarrow{u} \cdot k_2 \overrightarrow{v} &= k_1(a,b) \cdot k_2(c,d)\\
&= (k_1a,k_1b) \cdot(k_2c,k_2d)\\
&= k_1k_2ac+k_1k_2bd\\
&=(k_1k_2)(ac+bd)\\
&= (k_1k_2)(a,b) \cdot (c,d)\\
&=(k_1k_2)\overrightarrow{u} \cdot \overrightarrow{v}\end{align}||

Contenu
Corps

Pour valider ta compréhension à propos des vecteurs de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Remove audio playback
No