
This property can be proven with the following formula. ||→u+→v=→AB+→BC=→AD+→DC=→v+→u||
||\color{Red}{\overrightarrow{u}+(\overrightarrow{v}+\overrightarrow{w}) = (\overrightarrow{u}+\overrightarrow{v})+\overrightarrow{w}}||This property can be proven by using vectors |\overrightarrow{AB}, \overrightarrow{BC}| and |\overrightarrow{CD}| and Chasles' relation. ||(→AB+→BC)+→CD=→AC+→CD=→AD||A similar calculation can be performed by moving the parentheses.||→AB+(→BC+→CD)=→AB+→BD=→AD||Thus, we obtain the associative property.
Additive identity:||\color{Red}{\overrightarrow{u}+\overrightarrow{0}=\overrightarrow{u}}||The components of the vector |\overrightarrow{u}| are |(a,b)| and the components of the |\overrightarrow{0}| vector are |(0,0)|.
Thus: ||→u+→0=(a,b)+(0,0)=(a+0,b+0)=(a,b)=→u||
Multiplicative identity: ||\color{Red}{1\overrightarrow{u}=\overrightarrow{u}}||The components of the vector |\overrightarrow{u}| are |(a,b)|.
Therefore: ||1×→u=1×(a,b)=(1a,1b)=(a,b)=→u||
||\color{Red}{\overrightarrow{u}+(-\overrightarrow{u})=\overrightarrow{0}}||
The components of the vector |\overrightarrow{u}| are |(a,b)| and the components of the vector |-\overrightarrow{u}| are |(-a,-b)|.
Then: ||→u+(−→u)=(a,b)+(−a,−b)=(a−a,b−b)=(0,0)=→0||
||\color{Red}{k(c\overrightarrow{u})=(kc)\overrightarrow{u}}||
The components of the vector |\overrightarrow{u}| are |(a,b)|.
So: ||k(c→u)=k(c(a,b))=k(ca,cb)=(kca,kcb)=(kc)(a,b)=(kc)→u||
||\color{Red}{k(\overrightarrow{u}+\overrightarrow{v})=k\overrightarrow{u}+k\overrightarrow{v}}||
The components of the vector |\overrightarrow{u}| are |(a,b)| and the components of the vector |\overrightarrow{v}| are |(c,d).|
Then:||k(→u+→v)=k((a,b)+(c,d))=k(a+c,b+d)=(k(a+c),k(b+d))=(ka+kc,kb+kd)=(ka,kb)+(kc,kd)=k→u+k→v||
||\color{Red}{(k+c)\overrightarrow{u}=k\overrightarrow{u}+c\overrightarrow{u}}||
The components of the vector |\overrightarrow{u}| are |(a,b).|
Thus:||(k+c)→u=(k+c)(a,b)=((k+c)a,(k+c)b)=(ka+ca,kb+cb)=(ka,kb)+(ca+cb)=k(a,b)+c(a,b)=k→u+c→u||
In this relation, |A|, |B|, and |C| represent points in the Cartesian plane.||\color{Red}{\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}}||

||\color{Red}{ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}}||
Let |\overrightarrow{u}=(a,b)|, |\overrightarrow{v}=(c,d)| et |\overrightarrow{w}=(e,f)|.
Then:
||→u⋅(→v+→w)=(a,b)⋅((c,d)+(e,f))=(a,b)⋅(c+e,d+f)=(a(c+e)+b(d+f))=(ac+ae+bd+bf)=(ac+bd)+(ae+bf)=(a,b)⋅(c,d)+(a,b)⋅(e,f)=→u⋅→v+→u⋅→w||
Let |\overrightarrow{u}=(a,b)|, |\overrightarrow{v}=(c,d)| be vectors, and |k_1| and |k_2|, scalars.||\color{Red}{k_1 \overrightarrow{u} \cdot k_2 \overrightarrow{v}=(k_1k_2)\overrightarrow{u} \cdot \overrightarrow{v}}||
||k1→u⋅k2→v=k1(a,b)⋅k2(c,d)=(k1a,k1b)⋅(k2c,k2d)=k1k2ac+k1k2bd=(k1k2)(ac+bd)=(k1k2)(a,b)⋅(c,d)=(k1k2)→u⋅→v||
Pour valider ta compréhension à propos des vecteurs de façon interactive, consulte la MiniRécup suivante :
