Content code
m1367
Slug (identifier)
factoring-a-monomial
Grades
Secondary II
Secondary III
Topic
Mathematics
Tags
factoring
factors
monomial
prime factorization
prime numbers
decomposition
variables
coefficients
rational fraction
factor tree
Content
Contenu
Corps

Factoring consists of writing an expression in the form of a product of prime factors, called prime factorization. When factoring a monomial, its coefficient and variables must be decomposed.

To factor a monomial, follow these steps.

Surtitle
Règle
Content
Corps
  1. Decompose the coefficient into prime factors.

  2. Decompose the variables.

  3. Write the monomial as a product of prime factors.

Content
Corps

Factor the monomial |300x^3yz^2.|

  1. Decompose the coefficient into prime factors
    Several techniques can be used to find the prime factorization. The factor tree is one of them.
    ||300=2\times 2\times 3\times 5\times 5||

  2. Decompose the variables
    ||\color{#333FB1}{x^3}\color{#EC0000}{y}\color{#3A9A38}{z^2}=\color{#333FB1}{x}\times \color{#333FB1}{x}\times \color{#333FB1}{x}\times \color{#EC0000}{y}\times \color{#3A9A38}{z}\times \color{#3A9A38}{z}||

  3. Write the monomial as a product of prime factors
    ||300x^3yz^2=2\times 2\times 3\times 5\times 5 \times x\times x\times x\times y\times z\times z||

Content
Corps

Factoring a monomial is useful when simplifying a fraction that contains a monomial in the numerator and the denominator; thus, the same steps are performed twice.

Content
Corps

Simplify the fraction |\dfrac{18a^4b^3c}{6a^3bc^2}.|

  1. Decompose the coefficients into prime factors
    ||\begin{align}\color{#333FB1}{18}&=\color{#333FB1}{2}\times \color{#333FB1}{3}\times \color{#333FB1}{3}\\ \color{#333FB1}{6}&=\color{#333FB1}{2}\times \color{#333FB1}{3}\end{align}||

  2. Decompose the variables
    ||\begin{align}\color{#3A9A38}{a^4}\color{#EC0000}{b^3}\color{#FA7921}{c}&=\color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#EC0000}{b}\times \color{#EC0000}{b}\times \color{#EC0000}{b}\times \color{#FA7921}{c}\\ \color{#3A9A38}{a^3}\color{#EC0000}{b}\color{#FA7921}{c^2}&=\color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#EC0000}{b}\times \color{#FA7921}{c}\times \color{#FA7921}{c}\end{align}||

  3. Write each monomial as a product of prime factors
    ||\dfrac{\color{#333FB1}{18}\color{#3A9A38}{a^4}\color{#EC0000}{b^3}\color{#FA7921}{c}}{\color{#333FB1}{6}\color{#3A9A38}{a^3}\color{#EC0000}{b}\color{#FA7921}{c^2}}=\dfrac{\color{#333FB1}{2}\times \color{#333FB1}{3}\times \color{#333FB1}{3}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#EC0000}{b}\times \color{#EC0000}{b}\times \color{#EC0000}{b}\times \color{#FA7921}{c}}{\color{#333FB1}{2}\times \color{#333FB1}{3}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#3A9A38}{a}\times \color{#EC0000}{b}\times \color{#FA7921}{c}\times \color{#FA7921}{c}}||

  4. Simplify the fraction by eliminating common factors
    ||\begin{align} &\dfrac{\cancel{\color{#333FB1}{2}}\times \cancel{\color{#333FB1}{3}}\times \color{#333FB1}{3}\times \cancel{\color{#3A9A38}{a}}\times \cancel{\color{#3A9A38}{a}}\times \cancel{\color{#3A9A38}{a}}\times \color{#3A9A38}{a}\times \cancel{\color{#EC0000}{b}}\times \color{#EC0000}{b}\times \color{#EC0000}{b}\times \cancel{\color{#FA7921}{c}}}{\cancel{\color{#333FB1}{2}}\times \cancel{\color{#333FB1}{3}}\times \cancel{\color{#3A9A38}{a}}\times \cancel{\color{#3A9A38}{a}}\times \cancel{\color{#3A9A38}{a}}\times \cancel{\color{#EC0000}{b}}\times \cancel{\color{#FA7921}{c}}\times \color{#FA7921}{c}}\\&=\dfrac{\color{#333FB1}{3}\times \color{#3A9A38}{a} \times \color{#EC0000}{b}\times \color{#EC0000}{b}}{\color{#FA7921}{c}} \\&= \dfrac{3ab^2}{c} \end{align}||

The fraction |\dfrac{18a^4b^3c}{6a^3b}| , when simplified, is |\dfrac{3\times a \times b\times b}{c}| or |\dfrac{3ab^2}{c}.|

Content
Corps

When simplifying a fraction with more than one term in the numerator or denominator, other factorization methods must be used. This is a case of simplifying rational expressions.

Title (level 2)
Video
Title slug (identifier)
video
Contenu
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No