Content code
m1100
Slug (identifier)
finding-the-area-of-a-triangle-using-trigonometry
Grades
Secondary IV
Topic
Mathematics
Content
Contenu
Corps

By definition, trigonometric ratios are applicable only for right triangles. If no right angle exists in a triangle, the properties of different segments can be used to create one. The missing measurements can be found to calculate the area of ​​any triangle.

Links
Title (level 2)
Using the Trigonometric Formula
Title slug (identifier)
using-the-trigonometric-formula
Contenu
Corps

Unlike trigonometric ratios, the trigonometric formula is not used to find a side measurement, but to calculate the area of a triangle.

Content
Corps

||A_\text{triangle} = \displaystyle \frac{\color{green}{a} \times \color{blue}{b} \times \sin \color{red}{C}}{2}||
Where

|\color{green}{a} \ \text{and} \ \color{blue}{b}| are measurements of the sides.

|\color{red}{C}| is the measurement of the angle formed by the sides, as follows:

Image
image
Corps

Demonstrating the formula using trigonometric ratios.

Content
Corps

To demonstrate the trigonometric formula, use the following triangle:

Image
image
Corps

In this case, the following can be determined:
||A_\text{triangle} = \displaystyle \frac{\color{red}{a} \times h }{2}||
According to the medium right-angle triangle on the left, the following can be determined:
||\begin{align} \sin C &= \frac{h}{\color{green}{b}} \\
\Rightarrow \color{green}{b} \times \sin C &= h \end{align}||
Substituting the variable |h| gives:
||\begin{align} A_\text{triangle} &= \frac{\color{red}{a} \times h}{2}\\
&= \frac{ \color{red}{a} \times \color{green}{b} \times \sin C}{2}\end{align}||

Corps

Despite the fact that we are studying non-right triangle situations, the properties of other types of triangles (isosceles and right) and the Pythagorean Theorem can be used.

However, when the information is available, the procedure and calculations differ slightly.

Content
Corps

A farmer has too much agricultural land and decides to sell off a portion of it.

Image
image
Corps

What price should he charge for the portion of land if the going price is $15 / m2?

  1. Identify the essential measurements.

    All the numbers essential for applying the trigonometric formula are given as follows:
    ||\begin{align} \color{green}{a} &= \color{green}{ 85 \ \text{m}}\\
    \color{blue}{b} &= \color{blue}{92 \ \text{m}}\\
    \text{m} \angle C &= 105^\circ \end{align}||

  2. Apply the trigonometric formula.

    ||\begin{align}\color{red}{A_\text{triangle}} &= \frac{\color{green}{a} \times \color{blue}{b} \times \sin C}{2} \\
    &= \frac{\color{green}{85} \times \color{blue}{92} \times \sin 105^\circ}{2}\\
    &\approx 3 \ 776.77 \ \text{m}^2 \end{align}||

  3. Interpret the answer.

    The selling price is | = 15 \times 3776.77 = \$56\ 651.55.|

Corps

In summary, it is possible to apply the trigonometric formula when the measurements of an angle and the sides forming it are known.

Title (level 2)
By Drawing the Height
Title slug (identifier)
drawing-the-height
Contenu
Corps

The principle behind this method is to form right triangles to allow the use of trigonometric ratios. With these ratios, it is easier to find the missing measurements needed to calculate the area of a non-right triangle.

Content
Corps

Height inside the triangle
To calculate the area of ​​the following triangle, draw the height originating from vertex C:

Image
image
Corps

Thus, the missing measurements can be found using the following trigonometric ratios:
||\begin{align} &1. &\sin 40^\circ &= \frac{\color{orange}{m \overline{CH}}}{\color{green}{m \overline{BC}}}\\
&&\Rightarrow \color{orange}{m \overline{CH}} &= \sin 40^\circ \times \color{green}{m \overline{BC}}\\\\&2.& \cos 40^\circ &= \frac{m \overline{BH}}{\color{green}{m \overline{BC}}} \\
&&\Rightarrow m \overline{BH} &= \cos 40^\circ \times \color{green}{m \overline{BC}}\\\\
&3.& \tan \color{red}{22^\circ} &= \frac{\color{orange}{m \overline {CH}}}{m \overline{AH}}\\
&&\Rightarrow m \overline{AH} &= \displaystyle \frac{\color{orange}{m \overline{CH}}}{\tan \color{red}{22^\circ}}\end{align}||
4. Considering |\overline{AB}| as the base and |\color{orange}{\overline{CH}}| as the height of the triangle, the area can be calculated as follows:
||\begin{align} \Delta ABC &= \frac{(m \overline{AH} + m \overline {BH}) \times \color{orange}{m \overline{CH}}}{2}\\
&= \frac{m\overline{AB} \times \color{orange}{m \overline{CH}}}{2}\end{align}||

Corps

The same approach can be used when the height of the triangle is drawn outside the triangle.

Content
Corps

The height outside the triangle
To calculate the area of ​​the following triangle, draw the height originating from vertex B:

Image
image
Corps

Thus, the missing measurements can be found using the following trigonometric ratios:
||\begin{align} &1.&m \angle BCH &= 180^\circ - \color{blue}{m \angle BCA} \\
&&&= 180^\circ - \color{blue}{118^\circ}\\
&&&= 62^\circ\\\\
&2.& \sin \color{red}{22^\circ} &= \frac{\color{orange}{m \overline{BH}}}{\color{green}{m \overline{BA}}}\\
&& \Rightarrow \color{orange}{m \overline{BH}} &= \sin \color{red}{22^\circ} \times \color{green}{m \overline{BC}}\\\\
&3.& \color{red}{m ​\overline{AC}} &= m \overline {AH} - m \overline{CH}\end{align}||
According to |\Delta BCH|,
||\begin{align}\tan 62^\circ &= \frac{\color{orange}{m \overline {BH}}}{m \overline{CH}} \\ \Rightarrow m \overline {CH}
&= \frac{\color{orange}{m \overline{BH}}}{\tan 62^\circ}\end{align}||
According to |\Delta ABH|,
||\begin{align} \cos \color{red}{22^\circ} &= \frac{m \overline {AH}}{\color{green}{m \overline {AB}}} \\
m \overline {AH} &= \cos \color{red}{22^\circ} \times \color{green}{m \overline {AB}}\end{align}||
4. Considering |\color{red}{\overline {AC}}| as the base and |\color{orange}{\overline{BH}}| as the height, we can calculate the area of ​​triangle ABC,
||\begin{align} A_\Delta &= \frac{(m \overline {AH} - m \overline{CH}) \times \color{orange}{m \overline {BH}}}{2} \\
&= \frac{\color{red}{m \overline {AC}​} \times \color{orange}{m \overline{BH}}}{2}\end{align}||

Note: It is important that the right-angled triangle formed by drawing the height contains at least one angle measurement (other than the right angle) and at least one side measurement.

Title (level 2)
The Area of an Isosceles Triangle
Title slug (identifier)
area-of-an-isosceles-triangle
Contenu
Corps

For isosceles triangles, the trigonometric formula and trigonometric ratios are used. In the case of the ratios, they are essential for finding missing side or angle measurements.

Content
Corps

What is the area of the following triangle?

Image
image
Corps
  1. Draw the appropriate height

Image
image
Corps

Thus,
||\begin{align}\text{m} \angle C &= 180^\circ - \color{blue}{70^\circ} - \color{green}{40^\circ} \\
&= 70^\circ\\
\Rightarrow \angle C &= \color{blue}{\text{m} \angle A} \\
&= 70^\circ\end{align}||

Therefore, |\Delta ABC | is an isosceles.

  1. Use trigonometric ratios

    For the height, use the trigonometric ratio associated with the side |\overline {AH}| of |\Delta AHB| :
    ||\begin{align} \cos \color{blue}{70^\circ} &= \frac{\text{m} \overline{AH}}{15}\\
    \Rightarrow m \overline{AH} &= \cos \color{blue}{70^\circ} \times 15\\
    &\approx ​5.12 \ \text{cm}\\\\
    \sin \color{blue}{70^\circ} &= \frac{\color{orange}{m \overline{BH}}}{15} \\
    \Rightarrow \color{orange}{m \overline {BH}} &= \sin \color{blue}{70^\circ} \times 15\\
    &\approx \color{orange}{14.1 \ \text{cm}}\end{align}||

    In addition,
    ||\begin{align} m \angle BCA &= 180^\circ - \color{blue}{70^\circ} - \color{green}{40^\circ} \\
    &= 70^\circ\end{align}||

    Since we are dealing with an isosceles triangle,
    ||\begin{align} \color{red}{\text{m} \overline {AC}} &= 2 \times \text{m} \overline {AH} \\
    &= 2 \times 5.12 \\
    &= \color{red}{10.24\ \text{cm}}\end{align}||

  2. Apply the formula

    ||\begin{align} A_\text{triangle}&= \frac{\color{red}{\text{base}} \times \color{orange}{\text{height}}}{2}\\
    ​​&= \frac{\color{red}{10.24} \times \color{orange}{14.1}}{2}\\
    &\approx 72.19 \ \text{cm}^2\end{align}||

  3. Interpret the answer

    The area of the triangle is approximately 72.19 cm2.

Title (level 2)
The Area of ​​a Non-Right Triangle (Two Angle Measurements and One Side Measurement)
Title slug (identifier)
area-of-triangle-2-angles-and-1-side-measurement
Contenu
Corps

In more complex situations, we only find the measurement of one side, but two measurements of different angles. To achieve the answer, it is necessary to reuse some of the approaches from the previous examples by drawing the height.

Content
Corps

To establish a military base at a new location, the Generals from different squadrons sketch the following plan:

Image
image
Corps

To fit all the soldiers and their equipment, the area of ​​the new base must be at least |25 \ \text{km}^2|. Does the plan above meet this requirement?

  1. Draw the appropriate height

    To form two right-angled triangles, draw the following height:

Image
image
Corps
  1. Use trigonometric ratios

    To calculate the area of ​​the triangle, find |\color{blue}{\text{m} \overline {AB}}| .
    ||\begin{align}\sin 38^\circ &= \frac{\color{green}{\text{m} \overline {CH}}}{8 \ \text{km}} \\
    \color{green}{\text{m} \overline {CH}} &\approx 4.5 \ \text{km}\\\\
    \cos 38^\circ &= \frac{\text{m} \overline {AH}}{8 \ \text{km}} \\
    \text{m} \overline {AH} &\approx 6.62 \ \text{km}\\\\
    \tan 51^\circ &= \frac{\color{green}{\text{m} \overline {CH}}} {\text{m} \overline {BH}} \\
    \tan 51^\circ &= \frac{4.5 \ \text{km}}{\text{m} \overline {BH}} \\
    \text{m} \overline {BH} &\approx 4.36 \ \text{km}\\\\
    \color{blue}{\text{m} \overline{AB}} &= \text{m} \overline {AH} + \text{m} \overline {HB}
    \\
    &= 6.62 + 4.36 \\
    &= \color{blue}{10.98 \ \text{km}}\end{align}||

  2. Calculate the area

    ||\begin{align} A_\text{triangle} &= \frac{\color{blue}{\text{base}} \times \color{green}{\text{height}}}{2}\\
    &= \frac { \color{blue}{m \overline{AB}}​ \times \color{green}{m \overline{CH}}}{2}\\
    &= \frac { \color{blue}{10.98}​ \times \color{green}{4.5}}{2}\\
    &\approx 24.71 \ \text{km}^2\end{align}||

  3. Interpret the answer

    The Generals will have to go back to the drawing board, because the area of ​​the triangle they drew up is less than |25 \ \text{km}^2|.

Corps

In the previous example, the sine law could have been used to find |\color{blue}{\text{m} \overline {AB}}.|

Contenu
Corps

To confirm your understanding of trigonometry, consult the following interactive CrashLesson:

MiniRécup
Title (level 2)
Exercises
Title slug (identifier)
exercises
Remove audio playback
No
Printable tool
Off