Content code
m1297
Slug (identifier)
metric-relations-in-a-circle
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
cercle
measurement
égale
corde
mesure du segment
relations métriques
tangente
angle inscrit
Content
Contenu
Content
Corps

Metric relations in a circle are mathematical links between the various quantities in a circle.

Corps

Different links between measures can be described when drawing geometric figures so that they share certain elements with a circle.

Links
Title (level 2)
The Relationship Between Segments of a Circle and that Circle
Title slug (identifier)
circle-and-circle
Contenu
Title (level 3)
Isometric Lines
Title slug (identifier)
isometric-lines
Surtitle
Règle
Content
Corps

In the same circle or in two congruent circles, two isometric chords are located the same distance from the centre and vice versa.

Content
Corps

In the circle below:

Image
Circle
Corps
  • If the measure of chord |\overline{AD}| is equal to the measure of chord |\overline{BC},| then the measure of line segment |\overline{EO}| is equal to the measure of line segment |\overline{FO}.|

  • If the measure of line segment |\overline{EO}| is equal to the measure of line segment |\overline{FO},| then the measure of chord |\overline{AD}| is equal to the measure of chord |\overline{BC}.|

We can summarize as follows:

If |\mathrm{m}\overline{AD}=\mathrm{m}\overline{BC},| thus |\mathrm{m}\overline{EO}=\mathrm{m}\overline{FO};|
If |\mathrm{m}\overline{EO}=\mathrm{m}\overline{FO},| thus |\mathrm{m}\overline{AD}=\mathrm{m}\overline{BC}.|

Title (level 3)
Diameter and a Chord
Title slug (identifier)
diameter-and-a-chord
Surtitle
Règle
Content
Corps

Any diameter perpendicular to a chord bisects both the chord itself and each of the arcs it subtends.

Content
Corps

In the circle below:

Image
Circle
Corps
  • If the measure of line segment |\overline{AE}| is equal to the measure of line segment |\overline{CE},| then the measure of arc |\overset{\huge\frown}{\small{AB}}| is equal to the measure of arc |\overset{\huge\frown}{\small{BC​}}| and the measure of arc |\overset{\huge\frown}{\small{AD}}| is equal to the measure of arc |\overset{\huge\frown}{\small{DC}};|

  • If the measure of arc |\overset{\huge\frown}{\small{AB}}| is equal to the measure of arc |\overset{\huge\frown}{\small{BC}}| and the measure of arc |\overset{\huge\frown}{\small{AD}}| is equal to the measure of arc |\overset{\huge\frown}{\small{DC}},| then the measure of line segment |\overline{AE}| is equal to the measure of line segment |\overline{CE}.|

We can summarize as follows:

If |\mathrm{m}\overline{AE}=\mathrm{m}\overline{CE},| then |\mathrm{m}\overset{\huge\frown}{\small{AB}}=\mathrm{m}\overset{\huge\frown}{\small{BC}}| and |\mathrm{m}\overset{\huge\frown}{\small{AD}}=\mathrm{m}\overset{\huge\frown}{\small{DC}};|

if |\mathrm{m}\overset{\huge\frown}{\small{AB}}=\mathrm{m}\overset{\huge\frown}{\small{BC}}| and |\mathrm{m}\overset{\huge\frown}{\small{AD}}=\mathrm{m}\overset{\huge\frown}{\small{DC}},| then |\mathrm{m}\overline{AE}=\mathrm{m}\overline{CE}.|

Title (level 2)
Relationship Between Lines and a Circle
Title slug (identifier)
lines-and-circle
Contenu
Title (level 3)
Radius at the Point of Tangency
Title slug (identifier)
tangency-point
Content
Corps

Anything perpendicular to the end of a radius is tangent to the circle and vice versa.

Content
Corps

In the circle below:

Image
Circle
Corps
  • If the line |d| goes through the endpoint |P| of radius |\overline{OP}| and is perpendicular to this radius, then line |d| is tangent to the circle with centre |O.|

  • If the line |d| is tangent to the circle with centre |O,| then line |d| is perpendicular to the radius |\overline{OP}.|

We can summarize as follows:

If |d\perp\overline{OP},| then |d| is tangent to the circle;

if |d| is tangent to the circle, then |d\perp\overline{OP}.|

Title (level 3)
Parallel Lines and a Circle
Title slug (identifier)
parallel-lines-and-circle
Surtitle
Règle
Content
Corps

Two parallel lines, either secant or tangent, intersect two isometric arcs on that circle.

Content
Corps

In the circle below:

Image
Circle
Corps
  • If the secant lines |d_1| and |d_2| are parallel, then the measure of arc |\overset{\huge\frown}{\small{AB}}| is equal to the measure of arc |\overset{\huge\frown}{\small{DC}}.|

  • If the secant lines |d_2| and |d_3| are parallel, then the measure of arc |\overset{\huge\frown}{\small{BP}}| is equal to the measure of arc |\overset{\huge\frown}{\small{CP}}.|

We can summarize as follows:

If |d_1\parallel d_2,| then |\mathrm{m}\overset{\huge\frown}{\small{AB}}=\mathrm{m}\overset{\huge\frown}{\small{DC}};|

if |d_2\parallel d_3,| then |\mathrm{m}\overset{\huge\frown}{\small{BP}}=\mathrm{m}\overset{\huge\frown}{\small{CP}}.|

Content
Corps

A tangent to a circle is a straight line that intersects a circle at a single point.

Title (level 2)
Relationship Between Angles and a Circle
Title slug (identifier)
angles-and-circle
Contenu
Corps

The measure of an inscribed angle

Surtitle
Règle
Content
Corps

An inscribed angle’s measure is half the measure of the arc located inside its sides.

Content
Corps

In the circle below:

Image
Circle
Corps

The measure of angle |ABC| is equal to half the measure of angle |AOC|.

We can summarize as follows:
||\begin{align} \mathrm{m}\angle ABC &= \frac{\mathrm{m}\overset{\huge\frown}{\small{AC}}}{2} \\
&= \frac{\mathrm{m}\angle{AOC}}{2}\end{align}||
For example,
||\begin{align}\mathrm{m}\angle AOC&=120^{\ \circ}\\
\mathrm{m}\angle ABC&=60^{\ \circ}\end{align}||

Corps

The measure of an interior angle

Surtitle
Règle
Content
Corps

An angle with a vertex located between a circle and its centre measures half the sum of the measure of the two arcs formed by its extended sides.

Content
Corps

In the circle below:

Image
Circle
Corps
  • The measure of angle | AEB| is equal to half of the sum of the measure of arcs |\overset{\huge\frown}{\small{AB}}| and |\overset{\huge\frown}{\small{CD}}.|

  • The measure of angle |AEB| is equal to half of the sum of the measure of angles |AOB| and |COD.|

We can summarize as follows:

|\mathrm{m}\angle AEB=\dfrac{\mathrm{m}\overset{\huge\frown}{\small{AB}}+\mathrm{m}\overset{\huge\frown}{\small{CD}}}{2};|

|\mathrm{m}\angle AEB=\dfrac{\mathrm{m}\angle AOB+\mathrm{m}\angle COD}{2}.|

Corps

The measure of an exterior angle

Surtitle
Règle
Content
Corps

An angle with a vertex located outside a circle measures half of the difference between the measure of the arcs formed by its extended sides.

Content
Corps

In the circle below:

Image
Circle
Corps
  • The measure of angle |\angle AEB| is equal to half of the difference of the measure of arcs |\overset{\huge\frown}{\small{AB}}| and |\overset{\huge\frown}{\small{CD}}.|

  • The measure of angle |\angle AEB| is equal to half of the difference of the measure of angles |\angle AOB| and |\angle COD.|

We can summarize as follows:

|\mathrm{m}\angle AEB=\dfrac{\mathrm{m}\overset{\huge\frown}{\small{AB}}-\mathrm{m}\overset{\huge\frown}{\small{CD​​}}}{2};|

|\mathrm{m}\angle AEB=\dfrac{\mathrm{m}\angle AOB-\mathrm{m}\angle COD}{2}.|

Title (level 2)
The Relationship Between a Point and a Circle
Title slug (identifier)
point-and-circle
Contenu
Title (level 3)
Two Tangents
Title slug (identifier)
two-tangents
Surtitle
Règle
Content
Corps

If, from a point |P| outside a circle of centre |O,| we run two tangents to points |A| and |B| on the circle, then line |OP| bisects angle |APB| and |\mathrm{m}\overline{PA}=\mathrm{m}\overline{PB}.|

Content
Corps

In the circle below:

Image
Circle
Corps

Since the half-lines |PA| and |PB| are tangent to the circle of centre |O,| angles |APO| and |BPO| are equal because |PO| bisects angle |APB| and the measure of |\overline{PA}| and |\overline{PB}| are equal.

We can summarize as follows.

|\mathrm{m}\overline{PA}=\mathrm{m}\overline{PB}| and
|\mathrm{m}\angle APO=\mathrm{m}\angle BPO=\dfrac{\mathrm{m}\angle APB}{2}.|

Title (level 3)
Two Secants
Title slug (identifier)
two-secants
Surtitle
Règle
Content
Corps

If, from a point |P| outside the centre circle |O,| we run two secants |PB| and |PD,| then the product of |\mathrm{m}\overline{PA}| and |\mathrm{m}\overline{PB}| is equal to the product of |\mathrm{m}\overline{PC}| and |\mathrm{m}\overline{PD}.|

Content
Corps

In the circle below:

Image
Circle
Corps

We can say:
||\mathrm{m}\overline{PA}\times\mathrm{m}\overline{PB}=\mathrm{m}\overline{PC}\times\mathrm{m}\overline{PD}||

Assuming the following measurements: ||\begin{align}\mathrm{m}\overline{PA}&=2.7\ \mathrm{cm}\\
\mathrm{m}\overline{PC}&=2.4\ \mathrm{cm}\\
\mathrm{m}\overline{CD}&=4.8\ \mathrm{cm}\end{align}||
We obtain:

||\begin{align}2.7\times\mathrm{m}\overline{PB}&=2.4\times(2.4+4.8)\\
&=6.4\ \mathrm{cm}\end{align}||
Therefore, the measure of |\overline{AB}| is  |6.4-2.7=3.7\ \mathrm{cm}.|

Title (level 3)
A Secant and a Tangent
Title slug (identifier)
secant-and-tangent
Surtitle
Règle
Content
Corps

If, from a point |P| outside a circle of centre |O,| we lead a secant |PB| and a tangent |PC,| then the product of |\mathrm{m}\overline{PA}| and |\mathrm{m}\overline{PB}| is equal to the square of |\mathrm{m}\overline{PC}.|

Content
Corps

In the circle below:

Image
Circle
Corps

We can say:
||\mathrm{m}\overline{PA}\times\mathrm{m}\overline{PB}=(\mathrm{m}\overline{PC})^{2}||

Assuming the following measurements: ||\begin{align}\mathrm{m}\overline{PA}&=0.8\ \mathrm{cm}\\
\mathrm{m}\overline{AB}&=1.8\ \mathrm{cm}\end{align}||
We obtain:
||\begin{align}0.8\times(0.8+1.8)&=(\mathrm{m}\overline{PC})^{2}\\
\sqrt{2.08}&=\mathrm{m}\overline{PC}\\
1.44\ \mathrm{cm}&\approx\mathrm{m}\overline{PC}\end{align}||

Title (level 3)
Two Secant Chords
Title slug (identifier)
secant-chords
Surtitle
Règle
Content
Corps

When two chords intersect inside a circle, the product of the segments’ measure of one chord equals the product of the segments’ measure of the other.

Content
Corps

In the circle below:

Image
Circle
Corps

We can say:
||\mathrm{m}\overline{AE}\times\mathrm{m}\overline{CE}=\mathrm{m}\overline{BE}\times\mathrm{m}\overline{DE}||

Assuming the following measurements: ||\begin{align}\mathrm{m}\overline{AE}&=0.3\ \mathrm{cm}\\
\mathrm{m}\overline{CE}&=1.2\ \mathrm{cm}\\
\mathrm{m}\overline{DE}&=1.3\ \mathrm{cm}\end{align}||
We obtain:
||\begin{align}0.3\times1.2&=\mathrm{m}\overline{BE}\times1.3\\
0.28\ \mathrm{cm}&\approx\mathrm{m}\overline{BE}\end{align}||

Remove audio playback
No
Printable tool
Off