Content code
m1443
Slug (identifier)
properties-tangent-function
Parent content
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
intervalles
asymptotes
tangente
zéros
période
extremum
propriétés de la fonction tangente
propriétés de la tangente
Content
Contenu
Corps

In the following animation, experiment with the parameters |a,| |b,| |h| and |k| and observe the effects on the tangent function’s properties. After experimenting, read the concept sheet for more details about the properties of this function.

Corps

Content
Corps

Determine the properties of the function |f(x)=-\tan\left(\frac{1}{2}(x-1)\right)+\sqrt{2}| .

It may be useful to plot a graph of the function.

Image
Graph of a decreasing tangent function
Corps
  • The coordinates of the inflection point are |(h,k)=(1,\sqrt{2})|.

  • The period of the function is:||\displaystyle P = \frac{\pi}{\mid b \mid} = \frac{\pi}{\frac{1}{2}} = 2\pi||

  • The equation of the asymptotes are:||\begin{align} x &= \left(h + \frac{P}{2}\right) + n P\\ &= \left(1+\frac{2\pi}{2}\right) +n (2\pi)\\ &= (1+\pi) + 2\pi n \end{align}|| where |n \in \mathbb{Z}| and |P| is the period.

  • The domain of the function is: |\mathbb{R} \backslash \lbrace (1+\pi) + 2 \pi n \rbrace| where |n \in \mathbb{Z}| and |P| is the period.

  • The range of the function is the set of real numbers, i.e. |\mathbb{R}.|

  • The interval: from the values of |a| and |b,| the function must be decreasing, since the product |a b| is negative |\left(-1 \times \frac{1}{2} <0\right).| The graph confirms it. 

  • The zeroes of the function are calculated by replacing |f(x)| by |0.| ||\begin{align}0 &= -\tan\left(\frac{1}{2}(x-1)\right)+\sqrt{2}\\-\sqrt{2} &= - \tan\left(\frac{1}{2}(x-1)\right)\\ \sqrt{2} &= \tan\left(\frac{1}{2}(x-1)\right)\end{align}|| At this step, check what angle the tangent is |\sqrt{2}.| Look at the interval angle |[0,\pi].| The value is |0{.}955.|

    Thus, the interior of the tangent function is equal to |0{.}955.| ||\begin{align}0{.}955 &= \frac{1}{2}(x-1)\\1{.}91 &= x-1\\2{.}91 &= x\end{align}||The zero of the function in the cycle is |2{.}91.|

    The general expression for the function’s zeroes is |x=2{.}91 + 2\pi n| where |n \in \mathbb{Z}.|

  • The positive and negative intervals: the function is positive on the interval |(1-\pi + 2\pi n,\ 2{.}91 + 2 \pi n]| and negative on the interval |[2{.}91 + 2 \pi n,\ 1+ \pi + 2 \pi n)| where |n \in \mathbb{Z}|.
    Be careful not to include asymptotes.

  • The function has no extrema.

Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links