Content code
m1186
Slug (identifier)
plotting-tangent-function
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
paramètre
tangente
changement
paramètre est égal
règle
translation
fonction tangente
fonction tangente transformée
fonction trigonométrique
tracer la fonction tangente
graphique de la fonction tangente
point d'inflexion
Content
Contenu
Links
Title (level 2)
Plotting the Tangent Function Using the Equation and a Table of Values
Title slug (identifier)
table-values
Contenu
Corps

It is possible to plot a tangent function in a Cartesian plane given its equation. To plot the function, follow these steps:

Content
Corps
  1. Draw the inflection point |(h,k).|

  2. Find the period of the function |\left(\text{period}=\dfrac{\pi}{{\mid}b{\mid}}\right).|

  3. Calculate the equations of the asymptotes located to the left and to the right of the inflection point |\left(x=h\pm\dfrac{\text{period}}{2}\right)| and plot the 2 asymptotes.

  4. Determine if the function is increasing |(ab>0)| or decreasing |(ab<0).|

  5. Locate a few additional points, if necessary.

  6. Plot the function.

Content
Corps

Plot the graph of the function |f(x)=2\tan\big(3(x-1)\big)+4.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

1. Plot the inflection point

The coordinates of the inflection point are |(h,k)=(1,4).|

Second column
Image
Point (1, 4) in a Cartesian plane
Corps

2. Find the period of the function

The period of the function is calculated as follows: ||P = \dfrac{\pi}{{\mid}b{\mid}} = \dfrac{\pi}{{\mid} 3 {\mid} } = \dfrac{\pi}{3}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

3. Calculate the equations of the asymptotes located to the left and to the right of the inflection point and plot the 2 asymptotes

The equation of the asymptote to the left of the point |(h,k)| is calculated as follows: ||x = 1 - \dfrac{\dfrac{\pi}{3}}{2} = 1-\dfrac{\pi}{6} = \dfrac{6-\pi}{6}||

The equation of the asymptote to the right of the point |(h,k)| is calculated as follows: || x = 1 + \dfrac{\dfrac{\pi}{3}}{2} = 1+\dfrac{\pi}{6}= \dfrac{6+\pi}{6}||

Second column
Image
Asymptotes and a point on a Cartesian plane
Corps

4. Determine if the function is increasing or decreasing

The product |ab| is positive, so the function is increasing, as |2 \times 3 >0.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

5. Plot a few additional points, if necessary

To find other points, make a table of values.

|x| |y|
|0{.}6| |-1{.}14|
|0{.}7| |1{.}48|
|1{.}2| |5{.}37|
|1{.}3| |6{.}52|
Second column
Image
Two asymptotes and 5 points on a Cartesian plane
Columns number
2 columns
Format
50% / 50%
First column
Corps

6. Plot the function

Second column
Image
Tangent function on a Cartesian plane
Title (level 2)
Plot the Tangent Function Using the Equation of the Function and the Parameters |a, b, h,| and |k|
Title slug (identifier)
function-parameters
Contenu
Corps

There is a second way to plot a transformed tangent function in a Cartesian plane, by using the parameters |a,| |b,| |h|, and |k| in its equation. To plot the function, follow these steps:

Surtitle
Règle
Content
Corps
  1. Plot the basic tangent function, i.e. |y = \tan(x).|

  2. Apply the vertical stretching or compressing to the basic tangent function imposed by the parameter |a.|

  3. Apply the horizontal scaling imposed by the parameter |b.|

  4. Apply the horizontal translation imposed by the parameter |h.|

  5. Apply the vertical translation imposed by the parameter |k.|

Note: The last four steps can be done in any order.

Content
Corps

Plot the curve |y = -3 \tan \big(1(x - 4)\big) + 5| in a Cartesian plane.

1.  Plot the basic tangent function

Image
Function
Corps

2.  Apply the change imposed by the parameter |a|

The parameter |a| is equal to -3. Therefore, carry out a reflection across the x-axis and “stretch” the function vertically by a factor of 3. The following function is obtained.

Image
Function
Corps

3.  Apply the change imposed by the parameter |b|

In this case, the parameter |b| is equal to 1. It is not necessary to change the horizontal scaling.

4.  Apply the change imposed by the parameter |h|

In this case, the parameter |h| is equal to 4. Therefore, translate the function four units to the right.

Image
Graph
Corps

5.  Apply the change imposed by the parameter |k|

In this case, the parameter |k| is equal to 5. Therefore, translate the function five units upwards.

Image
Graph
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No