Content code
m1144
Slug (identifier)
the-role-of-parameters-in-an-exponential-function
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
exponentielle
paramètre
graphique
base
subit
fonction exponentielle
paramètres de la fonction exponentielle
fonction exponentielle transformée
fonction exponentielle canonique
Content
Contenu
Corps

Adding the parameters |a,| |b,| |h,| and |k| to the basic function |f(x)=(c)^x| results in the standard form (or the transformed form) of the exponential function.

Content
Corps

The standard form of an exponential function is: ||f(x)=a(c)^{b(x–h)}+k|| where |a,|  |b,|  |h,| and |k| are real numbers that act as parameters.

Note: The parameters |a,| |b,| and |c| must be non-zero. In addition, the base |c| must be greater than |0| and not |1|.

Links
Title (level 2)
Animation for Manipulating Parameters
Title slug (identifier)
animation-for-manipulating-parameters
Contenu
Corps

In the following interactive animation, experiment with the values of the parameters |a|, |b|, |h|, |k,| as well as the base |c| of the exponential function. Observe the changes which take place on the transformed curve (in black) compared to the base function with |c=2| (in blue). Use this opportunity to observe how changing the parameters affects the function’s properties. Afterwards, read the concept sheet to learn more about each of the parameters.

Corps

Title (level 2)
Analyzing Parameter |a|
Title slug (identifier)
analyzing-parameter-a
Contenu
Title (level 3)
Vertical Scaling of the Function by |a|
Title slug (identifier)
vertical-scale-factor
Corps

When |\mid a \mid >1|

The exponential function is stretched vertically relative to the base function. The larger the absolute value of the parameter  |a|, the closer the curve of the exponential function is to the |y|-axis.

When |0< \mid a \mid <1|

The exponential function undergoes a vertical contraction relative to the base function. The smaller (closer to |0|) the absolute value of the parameter |a|, the farther the curve of the exponential function is from the |y|-axis.

Image
Image
Title (level 3)
A Reflection of the Function’s Curve Across the |x|-Axis
Title slug (identifier)
reflection-graph
Corps

When |a| is positive |(a>0)|

The curve of the exponential function turns upwards, therefore it is increasing.

When |a| is negative |(a<0)|

The curve of the exponential function turns downwards, therefore it is decreasing.

Image
Image
Title (level 2)
Analyzing Parameter |b|
Title slug (identifier)
analyzing-parameter-b
Contenu
Title (level 3)
A Horizontal Scaling of the Function by |\dfrac{1}{b}|
Title slug (identifier)
horizontal-scale-factor
Corps

When |\mid b \mid >1|

The exponential function undergoes a horizontal contraction relative to the base function. The larger the absolute value of the parameter |b|, the farther away the graph of the exponential function is from the |x|-axis.

When |0< \mid b \mid <1|

The exponential function is stretched horizontally relative to the base function. The smaller (closer to |0|) the absolute value of the parameter |b|, the closer the graph of the exponential function is to the |x|-axis.

Image
Image
Title (level 3)
A Reflection of the Function’s Curve Relative to the |y|-Axis
Title slug (identifier)
reflection-graph-y-axis
Corps

When |b| is positive |(b>0)|

The curve of the exponential function increases from left to right.

When |b| is negative |(b<0)|

The curve of the exponential function decreases from left to right.

Image
Image
Title (level 2)
Analyzing the Base |c|
Title slug (identifier)
analyzing-parameter-c
Contenu
Title (level 3)
Variation
Title slug (identifier)
variation
Corps

The parameter |c| determines the variation of the exponential function.

When |c>1|

The exponential function increases from left to right.

When |0 < c < 1 |

The exponential function decreases from left to right.

Image
Image
Title (level 2)
Analyzing Parameter |h|
Title slug (identifier)
analyzing-parameter-h
Contenu
Title (level 3)
A Horizontal Translation of the Whole Function
Title slug (identifier)
horizontal-translation
Corps

When |h| is positive |(h>0)|

The curve of the exponential function shifts horizontally to the right.

When |h| is negative |(h<0)|

The curve of the exponential function shifts horizontally to the left.

Image
Image
Content
Corps

To properly identify the value of the parameter |h|, it is important to remember the definition of the standard form of an equation. For example, |h(x)=2^{x+2}| contains the parameter |h,| whose value is |h=-2.|

Title (level 2)
Analyzing Parameter |k|
Title slug (identifier)
analyzing-parameter-k
Contenu
Title (level 3)
Vertical Translation of the Whole Function
Title slug (identifier)
vertical-translation
Corps

When |k| is positive |(k>0)|

The curve of the exponential function shifts vertically upwards.

When |k| is negative |(k<0)|

The curve of the exponential function shifts vertically downward.

Image
Image
Content
Corps

The parameter |k| provides the location of the asymptote of the exponential function.

The equation of the asymptote is |y=k|.

Title (level 2)
Summary
Title slug (identifier)
summary
Contenu
Corps

If |c>1|

 

​|a>0|

​|a<0|

​|b>0|

m1144-01.png

m1144-02.png

​|b<0|

m1144-03.png

m1144-04.png

If |0<c<1|

 

​|a>0|

​|a<0|

​|b>0|

​|b<0|

Corps

As the summary table above shows, certain combinations of values of the parameters give the same result. For example, |c>1|, |a>0|, and |b>0| is equivalent to |0<c<1|, |a>0|, and |b<0|. For this reason, the equation of an exponential function in standard form is often simplified by omitting the parameters |b| and |h|. ||\large{f(x)=a(c)^{b(x-h)}+k \ \ \ \Rightarrow \ \ \ f(x)=a(c)^x+k}||
For the simpler way to write the equation of an exponential function, the summary table would be the following.

Corps

 

​|a>0|

|a<0|​

​|c>1|

​|0<c<1|

Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Title (level 2)
Exercices
Title slug (identifier)
exercices
Remove audio playback
No