Content code
c1055
Slug (identifier)
the-relationship-between-pressure-and-temperature-gay-lussac-s-law
Parent content
Grades
Secondary V
Topic
Chemistry
Tags
P1/T1=P2/T2
simple gas law
ideal gas law
kelvin
kPa
mm of Hg
Content
Contenu
Corps

The Gay-Lussac's law is a simple gas law.

Columns number
2 columns
Format
50% / 50%
First column
Title
Gay-Lussac’s Law
Links
Second column
Title
Other Simple Gas Laws
Links
Content
Corps

Simple gas laws apply only for ideal gases.

In other words, the values calculated using simple gas laws give us an approximation of the values that would be measured in reality. As long as the temperature is not too low and the pressure is not too high, these approximate values are very useful for predicting all kinds of situations.

Content
Corps

Gay-Lussac's law describes the relationship between the pressure |(P)| and the temperature |(T)| of a gas.

Corps

The following images show a certain amount of gas in a container of constant volume.

Columns number
2 columns
Format
50% / 50%
First column
Image
When the Bunsen burner is switched off, the temperature is low, the gas particles are not very agitated and the manometer indicates a low pressure.
Description

At a given temperature, the particles in the gas exert a certain pressure. This pressure is caused by the particles colliding with the walls of the container.

Second column
Image
When the Bunsen burner is lit, the temperature rises, the gas particles become more agitated and the manometer indicates a higher pressure.
Description

If the temperature of the gas is increased by heating, the kinetic energy of the particles also increases. The particles go into more collisions, so the pressure on the walls of the container increases.

Corps

Move the slider up and down to control the gas temperature, then observe the effect on the pressure.

Corps

In short, if the number of moles |(n)| and the volume |(V)| are constant, increasing the temperature |(T)| of a gas increases the pressure |(P)| it exerts. On the other hand, when the temperature decreases, the pressure decreases.

Pressure is said to be directly proportional to temperature. This relationship can be expressed using the following formula.

Content
Corps

When |V| and |n| are constant: 
|P\propto T| or |\dfrac{P}{T}=\text{constant}|
where 
|P\ :| pressure often in kilopascals |(\text{kPa})|
|T\ :| temperature in kelvins |(\text{K})|

Corps

We can also compare an initial situation and a final situation in which the temperature and pressure of a gas change. The following formula can then be used.

Content
Corps

When |V| and |n| are constant:
|\dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}|
where
|P_1\ :| initial pressure often in kilopascals |(\text{kPa})|
|T_1\ :|  initial temperature in kelvins |(\text{K})|
|P_2\ :| final pressure often in kilopascals |(\text{kPa})|
|T_2\ :| final temperature kelvins |(\text{K})|

Content
Corps

When driving a car, the friction between the road and the tires tends to heat them and the air they contain. This affects the air pressure in the tires.

Before driving the car, we assume that the air temperature in the tire is the same as the outside temperature, i.e. |22{,}00\ ^\circ\text{C}.| Using a manometer, we measure the initial air pressure in one of the tires and obtain |220{,}63\ \text{kPa}.|

After driving for a while, the manometer reads |234{,}42\ \text{kPa}.|

We assume that the amount of air |(n)| in the tire stays the same and we neglect the change in volume |(V),| determine the variation of the air temperature in the tire.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Lorsqu’on roule en voiture, la friction de la route avec les pneus tend à les faire chauffer ainsi que l’air qu’ils renferment. La pression de l’air dans les pneus est donc affectée.

Alors que la voiture n’a pas encore roulé, on considère que la température de l’air dans le pneu est la même que la température extérieure, soit de |22{,}00\ ^\circ\text{C}.| À l’aide d’un manomètre, on mesure la pression initiale de l’air dans l’un des pneus et on obtient |220{,}63\ \text{kPa}.| 

Après avoir roulé un certain temps, le manomètre indique |234{,}42\ \text{kPa}.|

En supposant que la quantité d’air |(n)| dans le pneu ne change pas et qu’on néglige la variation du volume |(V),| détermine la variation de la température de l’air du pneu.

Second column
Solution
Corps

First, we need to determine the final temperature |(T_2)| of the air in the tire.

  1. Identify the given values and convert the degrees Celsius into kelvins.

|\begin{align}
P_1&=220{.}63\ \text{kPa}\\
T_1&=22{.}00\ ^\circ\text{C}+273{.}15=295{.}15\ \text{K}\\
P_2&=234{.}42\ \text{kPa}\\
T_2&=\ ?
\end{align}|

|n| and |V| are constant.

  1. Choose the formula. Because |n| and |V| are constant, we choose:

||\dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}||

  1. Isolate |T_2| and plug the given values in the formula.

|\begin{align}
T_2&=\dfrac{P_2\times T_1}{P_1}\\\\
T_2&=\dfrac{234{.}42\ \text{kPa}\times 295{.}15\ \text{K}}{220{.}63\ \text{kPa}}\\\\
T_2&\approx313{.}60\ \text{K}
\end{align}|

  1. Now that we know the final temperature |T_2,| we can calculate the temperature variation.

|\begin{align}
\Delta T&=T_2-T_1\\
\Delta T&=313{.}60\ \text{K}-295{.}15\ \text{K}\\
\Delta T&=18{.}45\ \text{K}
\end{align}|

The variation temperature of the air in the tire is |18{.}45\ \text{K}.|

Note: Since a variation of |1\ \text{K}| corresponds to a variation of |1\ ^\circ\text{C},| we can also say that the variation temperature is |18{.}45\ ^\circ\text{C}.|

Contenu
Title
Louis Joseph Gay-Lussac
Content
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Louis Joseph Gay-Lussac (1778-1850), a French chemist and physicist, was fascinated by hot air balloons. This passion led him to study gases and their properties. He made numerous ascents to collect air samples and carry out experiments at altitude.

On September 16, 1804, he set the record for the highest hot air balloon ascent by reaching an altitude of 7016 m[1], a record he held until his death.

Second column
Image
Portrait of Louis-Joseph Gay-Lussac.
Description
Source: Niveshkin Nicolay, Shutterstock.com
Title
Why Shouldn't Gas Banisters Be Exposed to Extreme Heat?
Content
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Barbecue canisters contain propane |(\text{C}_3\text{H}_8)| in a gaseous state. If a propane canister is exposed to a high temperature, the pressure of the propane will increase as stated by Gay-Lussac's law. This high pressure can potentially cause the canister to explode.

This is why gas canisters are usually labelled with a warning to keep them away from sources of extreme heat.

Second column
Image
A propane canister next to a barbecue.
Description
Source: tab62, Shutterstock.com
Title (level 2)
Video
Title slug (identifier)
video
Contenu
Corps

Video coming soon!

Title (level 2)
Exercice
Title slug (identifier)
exercice
Contenu
Corps

Exercise coming soon!

Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Références en texte
  1. Bataille, X. Louis-Joseph Gay-Lussac : la loi de dilatation des gaz. France Archives. https://francearchives.gouv.fr/fr/pages_histoire/40010

Remove audio playback
No
Printable tool
Off