Content code
m1081
Slug (identifier)
multiplying-rational-expressions
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
restrictions
polynomials in the numerator
rational expression
rational fraction
Content
Contenu
Corps

In order to multiply rational fractions, or rational expressions, it is important to know how to multiply fractions and how to use various factoring techniques. To do so, follow these steps:

Surtitle
Règle
Content
Corps
  1. Factor the polynomials in the numerator and denominator of each fraction, if possible.

  2. Set all restrictions (the denominators must not be equal to 0).

  3. Multiply the fractions.

  4. Simplify the common factors of the resulting fraction, if possible.

Content
Corps

Find the answer to the following multiplication:||\dfrac{4-x^2}{x-2}\times \dfrac{-x}{2x+4}||

  1. Factor the polynomials in the numerator and denominator of each fraction.
    The numerator of the first fraction can be factored using a difference of squares and the denominator of the second fraction can be factored by removing a greatest common factor.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}4-x^2&=-(x^2-4)\\&=-(x-2)(x+2)\end{align}||

Second column
Corps

||2x+4 = 2(x+2)||

Corps

Now we can multiply the 2 fractions:||\dfrac{-(x-2)(x+2)}{(x-2)}\times \dfrac{-x}{2(x+2)}||

  1. Set all restrictions.
    Each factor in the denominator must not be equal to 0.

||\dfrac{-(x-2)(x+2)}{\color{#3b87cd}{(x-2)}}\times \dfrac{-x}{2\color{#fa7921}{(x+2)}}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\color{#3b87cd}{x-2}&\neq 0\\x&\neq2 \end{align}||

Second column
Corps

||\begin{align}\color{#3a9a38}{x+2}&\neq 0\\x&\neq-2 \end{align}||

Corps
  1. Multiply.

||\begin{align}&\dfrac{-(x-2)(x+2)}{(x-2)}\times \dfrac{-x}{2(x+2)}\\\\=&\ \dfrac{-(-x)(x-2)(x+2)}{2(x-2)(x+2)}\end{align}||

  1. Simplify the common factors in the resulting fraction.

||\begin{align}&\dfrac{-(-x)\cancel{(x-2)}\cancel{(x+2)}}{2\cancel{(x-2)}\cancel{(x+2)}}\\=&\ \dfrac{-(-x)}{2}\\=&\ \dfrac{x}{2}\end{align}||

Answer: The answer of the multiplication of |\dfrac{4-x^2}{x-2}\times \dfrac{-x}{2x+4}| is |\dfrac{x}{2}| where |x\neq2| and |x\neq-2.|

Content
Corps

Find the answer to the following multiplication:||\dfrac{x^2+3x+2}{2x^2+13x+20} \times \dfrac{x^2+7x+12}{2x^2+7x+6}||

  1. Factor the polynomials in the numerator and denominator of each fraction.
    All 4 polynomials can be factored using the product-sum method.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{gather}x^2+3x+2\\\\
\begin{aligned}\text{Product}&=1\times 2\\&=2\\ &=\color{#3b87cd}{1}\times \color{#3b87cd}{2}\end{aligned}\quad\begin{aligned}\text{Sum} &=3\\ &=\color{#3b87cd}{1}+\color{#3b87cd}{2}\\ \phantom{=} \end{aligned}\\\\
x^2+3x+2=(x+\color{#3b87cd}{1})(x+\color{#3b87cd}{2})\end{gather}||

Second column
Corps

||\begin{gather}x^2+7x+12\\\\
\begin{aligned}\text{Product}&=1\times12\\&=12\\ &=\color{#3b87cd}{3}\times \color{#3b87cd}{4}\end{aligned}\quad\begin{aligned}\text{Sum} &=7\\ &=\color{#3b87cd}{3}+\color{#3b87cd}{4}\\ \phantom{=} \end{aligned}\\\\
x^2+7x+12=(x+\color{#3b87cd}{3})(x+\color{#3b87cd}{4})\end{gather}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{gather}2x^2+13x+20\\\\
\begin{aligned}\text{Product}&=2\times 20\\&=40\\ &=\color{#3b87cd}{5}\times \color{#3b87cd}{8}\end{aligned}\qquad\begin{aligned}\text{Sum} &=13\\ &=\color{#3b87cd}{5}+\color{#3b87cd}{8}\\ \phantom{=} \end{aligned}\\\\
\begin{aligned}2x^2+13x+20&=2x^2+\color{#3b87cd}{5}x+\color{#3b87cd}{8}x+20\\&=x(2x+5)+4(2x+5)\\&=(x+4)(2x+5)\end{aligned}\end{gather}||

Second column
Corps

||\begin{gather}2x^2+7x+6\\\\
\begin{aligned}\text{Product}&=2\times 6\\&=12\\ &=\color{#3b87cd}{3}\times \color{#3b87cd}{4}\end{aligned}\qquad\begin{aligned}\text{Sum} &=7\\ &=\color{#3b87cd}{3}+\color{#3b87cd}{4}\\ \phantom{=} \end{aligned}\\\\
\begin{aligned}2x^2+7x+6&=2x^2+\color{#3b87cd}{3}x+\color{#3b87cd}{4}x+6\\&=x(2x+3)+2(2x+3)\\&=(x+2)(2x+3)\end{aligned}\end{gather}||

Corps

Now we can multiply the 2 fractions:||\dfrac{(x+1)(x+2)}{(2x+5)(x+4)} \times \dfrac{(x+3)(x+4)}{(2x+3)(x+2)}||

Corps
  1. Set all restrictions.
    Any factor in the denominator must not be equal to 0.

||\dfrac{(x+1)(x+2)}{\color{#3b87cd}{(2x+5)}\color{#3a9a38}{(x+4)}} \times \dfrac{(x+3)(x+4)}{\color{#fa7921}{(2x+3)}\color{#ec0000}{(x+2)}}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\color{#3b87cd}{2x+5} &\neq 0\\ x&\neq -\dfrac{5}{2}\end{align}||

Second column
Corps

||\begin{align}\color{#3a9a38}{x+4} &\neq\ 0\\ x &\neq -4\end{align}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\color{#fa7921}{2x+3} &\neq 0\\ x &\neq -\dfrac{3}{2}\end{align}||

Second column
Corps

||\begin{align}\color{#ec0000}{x+2} &\neq 0\\ x &\neq -2\end{align}||

Corps
  1. Multiply.

||\begin{align}&\dfrac{(x+1)(x+2)}{(2x+5)(x+4)}\times \dfrac{(x+3)(x+4)}{(2x+3)(x+2)}\\\\=&\ \dfrac{(x+1)(x+2)(x+3)(x+4)}{(2x+5)(x+4)(2x+3)(x+2)}\end{align}||

  1. Simplify the common factors of the resulting fraction.

||\begin{align}&\dfrac{(x+1)\cancel{(x+2)}(x+3)\cancel{(x+4)}}{(2x+5)\cancel{(x+4)}(2x+3)\cancel{(x+2)}}\\\\=\ &\dfrac{(x+1)(x+3)}{(2x+5)(2x+3)}\end{align}||

Answer: The answer of the multiplication of |\dfrac{x^2+3x+2}{2x^2+13x+20} \times \dfrac{x^2+7x+12}{2x^2+7x+6}| is |\dfrac{(x+1)(x+3)}{(2x+5)(2x+3)}| where |x\neq -\dfrac{5}{2},| |x\neq -4,| |x\neq -\dfrac{3}{2}| and |x\neq -2.|

Content
Corps

The answer to a multiplication question is sometimes written in the form of a fraction where the numerator and denominator are polynomials. In this case, the factors should be multiplied, if possible. So the answer from the previous example would be as follows.||\begin{align}\dfrac{(x+1)(x+3)}{(2x+5)(2x+3)}&=\dfrac{x^2+3x+x+3}{4x^2+6x+10x+15}\\&=\dfrac{x^2+4x+3}{4x^2+16x+15}\end{align}||

Content
Corps

When there are many restrictions, it is possible to use the notation |\notin.| The restrictions on the previous example could be written as follows.||x\notin\left\{-4, -\dfrac{5}{2},-2,-\dfrac{3}{2}\right\}||

Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No