Content code
m1082
Slug (identifier)
dividing-rational-expressions
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
restrictions
polynomials in the numerator
rational fraction
common factors
rational expression
Content
Contenu
Corps

In order to divide rational expressions, or rational fractions, it is important to know how to divide fractions and how to use various factoring techniques. Use the following approach:

Surtitle
Règle
Content
Corps
  1. Factor the polynomials in the numerator and denominator of each fraction when possible.

  2. Set all restrictions (the denominators and numerator of the divisor must not be equal to 0).

  3. Divide by transforming it into multiplication.

  4. Simplify the common factors of the resulting fraction when possible.

Content
Corps

Why must we look for restrictions in the numerator of the divisor?

In a rational expression, restrictions must be set on all polynomials found in the denominator.||\dfrac{a}{\color{#ec0000}b}\div\dfrac{c}{\color{#ec0000}d}\ \Rightarrow\ \color{#ec0000}b\ne 0\ \text{and}\ \color{#ec0000}d\ne 0||When we convert a division to a multiplication, we multiply by the reciprocal of the divisor, so the numerator becomes the denominator. This is why we need to exclude the values for which this numerator is zero.||\dfrac{a}{\color{#ec0000}b}\times\dfrac{\color{#ec0000}d}{\color{#fa7921}c}\ \Rightarrow\ \color{#ec0000}b\ne 0,\ \color{#ec0000}d\ne 0\ \underline{\text{and}\ \color{#fa7921}c\ne0}||

Content
Corps

Find the answer of the following division:||\dfrac{c^3-9c}{c^3} \div \dfrac{c+3}{c}||

  1. Factor the polynomials in the numerator and denominator of each fraction.
    The numerator of the 1st fraction can be factored by removing a greatest common factor, then using a difference of squares.||\begin{align}c^3-9c&=c\,(c^2-9)\\&=c\,(c-3)(c+3)\end{align}||
    Now the 2 fractions can be divided.||\dfrac{c\, (c-3) (c+3)}{c^3} \div \dfrac{c+3}{c}||

  2. Set all restrictions.
    The 2 denominators and the numerator of the 2nd fraction cannot be equal to |0.|||\dfrac{c\, (c-3) (c+3)}{\color{#3b87cd}{c^3}} \div \dfrac{\color{#ec0000}{c+3}}{\color{#3a9a38}c}||

Columns number
3 columns
Format
33% / 33% / 33%
First column
Corps

||\begin{align}\color{#3b87cd}{c^3}&\neq0\\c&\neq0\end{align}||

Second column
Corps

||\begin{align}\color{#ec0000}{c+3}&\neq0\\c&\neq-3\end{align}||

Third column
Corps

||\color{#3a9a38}c\neq0||

Corps
  1. Divide.
    ||\begin{align}&\dfrac{c\, (c-3) (c+3)}{c^3} \div \dfrac{c+3}{c}\\\\=&\ \dfrac{c\, (c-3) (c+3)}{c^3} \times \dfrac{c}{c+3}\\\\=&\ \dfrac{c^2\, (c-3) (c+3)}{c^3(c+3)}\end{align}||

  2. Simplify the common factors of the resulting fraction.
    ||\begin{align}&\dfrac{\cancel{c^2}(c-3)\cancel{(c+3)}}{\cancel{c^2}(c)\cancel{(c+3)}}\\\\=&\ \dfrac{c-3}{c}\end{align}||

Answer: The answer of the division |\dfrac{c^3-9c}{c^3} \div \dfrac{c+3}{c}| is |\dfrac{c-3}{c},| where |c\neq0| and |x\neq-3.|

Content
Corps

Find the answer of the following division.||\dfrac{x^2+8x+16}{2x^3+8x^2-3x-12} \div \dfrac{x+4}{2}||

  1. Factor the polynomials in the numerator and denominator of each fraction.
    The numerator of the first fraction can be factored, since it is a perfect square trinomial. The denominator of the first fraction can be factored by grouping.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}&x^2\boldsymbol{\color{#ec0000}{+}}8x+16\\
=\ &(\color{#3a9a38}{x})^2\boldsymbol{\color{#ec0000}{+}}2(\color{#3a9a38}{x})(\color{#3b87cd}{4})+(\color{#3b87cd}{4})^2\\
=\ &(\color{#3a9a38}{x}\boldsymbol{\color{#ec0000}{+}}\color{#3b87cd}{4})(\color{#3a9a38}{x}\boldsymbol{\color{#ec0000}{+}}\color{#3b87cd}{4})\end{align}||

Second column
Corps

||\begin{align}&\ 2x^3+8x^2-3x-12\\=&\ \color{#3a9a38}{2x^2} (\color{#3b87cd}{x+4}) \color{#3a9a38}{-3} (\color{#3b87cd}{x+4}) \\ =&\ (\color{#3b87cd}{x+4}) (\color{#3a9a38}{2x^2-3}) \end{align}||

Corps

Now the 2 fractions can be divided.||\dfrac{(x+4)(x+4)}{(x+4)(2x^2-3)} \div \dfrac{x+4}{2}||

  1. Set all restrictions.
    The 2 denominators and the numerator of the 2nd fraction cannot be equal to |0.|||\dfrac{(x+4)(x+4)}{\color{#3b87cd}{(x+4)}\color{#ec0000}{(2x^2-3)}} \div \dfrac{\color{#3b87cd}{x+4}}{2}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\color{#3b87cd}{x+4}&\neq0\\x&\neq-4\end{align}||

Second column
Corps

||\begin{align}\color{#ec0000}{2x^2-3}&\neq0\\2x^2&\neq3\\x^2&\neq\dfrac{3}{2}\\x&\neq\pm\sqrt{\dfrac{3}{2}}\end{align}||

Corps
  1. Divide.
    ||\begin{align}&\dfrac{(x+4)(x+4)}{(x+4)(2x^2-3)} \div \dfrac{x+4}{2}\\\\=&\ \dfrac{(x+4)(x+4)}{(x+4)(2x^2-3)} \times \dfrac{2}{x+4}\\\\=&\ \dfrac{2(x+4)(x+4)}{(x+4)(2x^2-3)(x+4)} \end{align}||

  2. Simplify the common factors of the resulting fraction.
    ||\begin{align}&\dfrac{2\cancel{(x+4)}\cancel{(x+4)}}{\cancel{(x+4)}(2x^2-3)\cancel{(x+4)}}\\\\=&\ \dfrac{2}{2x^2-3}\end{align}||

Answer: The answer of the division |\dfrac{x^2+8x+16}{2x^3+8x^2-3x-12} \div \dfrac{x+4}{2}| is |\dfrac{2}{2x^2-3},| where |x\neq-4| and |x\neq\pm\sqrt{\dfrac{3}{2}}.|

Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No