Content code
m1204
Slug (identifier)
the-arcs-and-sectors-of-a-circle
Parent content
Grades
Secondary I
Secondary II
Topic
Mathematics
Tags
cercle
secteur
disque
centre
arc de cercle
angle au centre
circonférence
aire
arcs de cercle
rayon
diamètre
proportions
mesure de l'arc
l'arc de cercle
aire d'un secteur de disque
aire d'un secteur
Content
Contenu
Corps

A central angle in a circle makes it possible to form the following.

Links
Corps

Since a circle’s central angle, arc, and sector are related to the same portion of the circle, one of the measurements can be determined from the following proportions.

Content
Corps

||\dfrac{\text{Central Angle}}{360^\circ}=\dfrac{\text{Length of the arc}}{\text{Circumference}}=\dfrac{\text{Area of the sector}}{\text{Area of the circle}}||

Title (level 2)
The Arc of a Circle
Title slug (identifier)
arc-circle
Contenu
Content
Corps

An arc represents a part of the circle’s circumference and is formed by the meeting of two radii on the circumference.

Corps

If we compare a circle to a bicycle wheel, the arc corresponds to the wheel sections between two spokes.

Image
Image
Corps

The arc of a circle represents a portion of the circumference just as the central angle corresponds to a portion of a complete turn. Since the portions correspond to the same ratio, we can obtain the length of the arc of a circle by using a proportion. The proportion is obtained by carrying out a cross multiplication according to the following ratio.

Content
Corps

||\dfrac{\text{Central Angle}}{360^\circ}=\dfrac{\text{Length of the arc}}{\text{Circumference}}||

Content
Corps

Calculate the length of the arc |\overset{\huge\frown}{\small{AB}}| intercepted by a central angle of |120^\circ| in a circle with a radius of |3\ \text{cm}.|

Image
Image
Corps

||\begin{align} \dfrac{\text{Central Angle}}{360^\circ}&=\dfrac{\text{Length of the arc}}{\text{Circumference}}\\\\ \dfrac{120^\circ}{360^\circ}&=\dfrac{m\overset{\huge\frown}{\small{AB}}}{2\pi (3)}\\\\ \dfrac{120^\circ}{360^\circ}&=\dfrac{m\overset{\huge\frown}{\small{AB}}}{18.84\ \text{cm}}\\\\ \Rightarrow m\overset{\huge\frown}{\small{AB}} &= \dfrac{120^\circ\times 18.84\text{ cm}}{360^\circ}= 6.28\ \text{cm}\end{align}||

Thus, |\overset{\huge\frown}{\small{AB}}| measures |6.28\ \text{cm}.|

Content
Corps

If an arc |\overset{\huge\frown}{\small{CD}}| measures |15\ \text{cm}| and the circumference is |120\ \text{cm},| what is the measure of the central angle intercepting the arc of the circle?

Image
Image
Corps

||\begin{align}\dfrac{\text{Central Angle}}{360^\circ}&=\dfrac{\text{Length of the arc}}{\text{Circumference}}\\\\
\dfrac{m\angle DOC}{360^\circ}&=\dfrac{15\ \text{cm}}{120\ \text{cm}}\\\\
\Rightarrow m\angle DOC &= \dfrac{15\ \text{cm}\times 360^\circ}{120\ \text{cm}} = 45^\circ \end{align}||

Thus, the central angle measures |45^\circ.|

Content
Corps

In a circle, the ratio of two central angles’ measurements is equal to the ratio of the arcs’ lengths intercepted by their sides.

Image
Image
Corps

||\begin{align}\dfrac{m\angle{AOB}}{m\angle{COD}} &= \dfrac{m\overset{\huge\frown}{\small{AB}}}{m\overset{\huge\frown}{\small{CD}}}\\\\ \text{Therefore,}\quad \dfrac{90^\circ}{40^\circ} &= \dfrac{180\ \text{cm}}{80\ \text{cm}}=2.25. \end{align}||

Title (level 2)
The Sector of a Circle
Title slug (identifier)
sector-circle
Contenu
Content
Corps

The sector of a circle represents a part of the circle or a section of its total area.

Corps

It is possible to calculate a sector area from the central angle forming it or from its arc on the circle.

Image
Image
Corps

To find the area of a sector, we can use the following ratios.

Content
Corps

||\dfrac{\text{Central Angle}}{360^\circ}=\dfrac{\text{Area of the sector}}{\text{Area of the circle}}||

Content
Corps

What is the area of this slice of apple pie if its diameter is |25\ \text{cm}| and the central angle is |60^\circ?|

Corps
  1. Find the measure of the radius
    ||\begin{align} r&=\dfrac{\text{Diameter}}{2}\\
    &=\dfrac{25}{2}\\
    &=12.5\ \text{cm}\end{align}||

  2. Use the ratio
    ||\begin{align} \dfrac{\text{Central angle}}{360^\circ} &=\dfrac{\text{Area of the sector}}{\text{Area of the circle}}\\\\ \dfrac{60^\circ}{360^\circ}&= \dfrac{\text{Area of the sector}}{\pi (12.5)^2}\\\\ \dfrac{60^\circ}{360^\circ}&= \dfrac{\text{Area of the sector}}{490.87 \text{ cm}^2}\\\\ \Rightarrow \text{Area of the sector} &= \dfrac{60^\circ \times 490.87 \text{ cm}^2}{360^\circ}=81.81\ \text{cm}^2\end{align}||

Content
Corps

A sector of a circle has an area of |60\ \text{cm}^2|. What is the length of its arc on the circle |\overset{\huge\frown}{\small{AB}}| if the radius of the circle is |6\ \text{cm}?|

Image
Image
Corps
  1. Use the correct ratio
    ||\begin{align} \dfrac{\text{Length of the arc}}{\text{Circumference}}&=\dfrac{\text{Area of the sector}}{\text{Area of the circle}}\\\\
    \dfrac{\text{Length of the arc}}{2 \pi r}&=\dfrac{\text{Area of the sector}}{\pi r^2}\\\\
    \dfrac{m\overset{\huge\frown}{\small{AB}}}{2\pi (6)}&=\dfrac{60\ \text{cm}^2}{\pi (6)^2}\\\\
    \dfrac{m\overset{\huge\frown}{\small{AB}}}{37.70\ \text{cm}}&=\dfrac{60\ \text{cm}^2}{113.10\ \text{cm}^2}\\\\
    \Rightarrow m\overset{\huge\frown}{\small{AB}} &= \dfrac{37.70\times 60}{113.10}= 20\ \text{cm}\end{align}||

Thus, |\overset{\huge\frown}{\small{AB}}| measures |20\ \text{cm}.|

Content
Corps

In a circle, the ratio of two sectors’ areas is equal to the ratio of the measurements of their central angles.

Image
Image
Corps

||\dfrac{\text{Area of sector} AOB}{\text{Area of sector }COD} = \dfrac{m\angle AOB}{m\angle COD}||

Contenu
Corps

Pour valider ta compréhension de l'aire et du périmètre des figures planes de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Title (level 2)
Video
Title slug (identifier)
video
Contenu
Title (level 2)
Exercise
Title slug (identifier)
exercise
Contenu
Remove audio playback
No
Printable tool
Off