The inverse of an exponential function is a logarithmic function.
The following are the steps to find the rule of the inverse of an exponential function when the rule is known.
-
Interchange |x| and |y.|
-
Isolate the |y| variable to get the inverse function.
-
Give the rule of the inverse.
The exponential function has a horizontal asymptote at |y=k,| limiting its range. Therefore, its inverse, the logarithmic function, has a vertical asymptote at |x=h,| limiting its domain.
The following example shows how to find the inverse of an exponential function in the form |f(x) = ac^{bx}.|
Determine the rule of the inverse of the function |f(x)=2(3)^{3x}.|
-
Interchange |x| and |y|
||\begin{align}\color{#ff55c3}y&=2(3)^{3\color{#3a9a38}x}\\\color{#3a9a38}x&=2(3)^{3\color{ #ff55c3}y}\end{align}|| -
Isolate the |y| variable
Start by isolating the power:
||\dfrac{x}{2}=3^{3\color{#ff55c3}y}||
We switch to the logarithmic form.||\color{#EC0000}{\dfrac {x}{2}}=\color{#51B6C2}3^{\color{#7CCA51}{3y}}\\\Updownarrow\\\color{#7CCA51}{3y}=\log_{\color{# 51B6C2}3}\left(\color{#EC0000}{\dfrac{x}{2}}\right)||
Isolate |y|:
||\begin{align}3\color{#ff55c3}y&= \log_3\!{\left(\dfrac{x}{2}\right)}\\\color{#ff55c3}y&=\dfrac{1}{3}\log_3\!{\left(\dfrac{x }{2}\right)}\end{align}|| -
Give the rule of the inverse
The inverse of the function |f(x)=2(3)^{3x}| is |f^{-1}(x)=\dfrac{1}{3}\log_3{\left(\dfrac{x}{2}\right)}|
The following graph that shows the function |\color{#ec0000}{f(x)}| and its inverse, |\color{#3b87cd}{f^{-1}(x)}.|
The following example shows how to find the inverse of an exponential function in the form |f(x)=a(c)^{b(x-h)}+k.|
Determine the rule of the inverse of the function |f(x)=-2(4)^{-\frac{1}{3}(x+5)}-7|
-
Interchange |x| and |y|
||\begin{align}\color{#ff55c3}y&=-2(4)^{-\frac{1}{3}(\color{#3a9a38}x+5)}-7\\ \color{#3a9a38}x&=-2(4)^{-\frac{1}{3}(\color{#ff55c3}y+5)}-7\end{align}|| -
Isolate the |y| variable
Start by isolating the power:
||\begin{align}x&=-2(4)^{-\frac{1}{3}(\color{#ff55c3}y+5)}-7\\ x+7&=-2(4)^{-\frac{1}{3}(\color{#ff55c3}y+5)}\\-\dfrac{1}{2}(x+7)&=4^{-\frac{1}{3}(\color{#ff55c3}y+5)}\end{align}||
Switch to logarithmic form:
||\color{#EC0000}{-\dfrac{1}{2}(x+7)} = \color{#51B6C2}4^{\color{#7CCA51}{-\frac{1}{3}(y+5)}}\\ \Updownarrow\\ \color{#3A9A38}{\color{#7CCA51}{-\frac{1}{3}(y+5)}} = \log_{\color{#51B6C2}4}\left(\!\color{#EC0000}{-\dfrac{1}{2}(x+7)}\!\right)||
Isolate |y.| ||\begin{align}-\dfrac{1}{3}(\color{#ff55c3}y+5)&=\log_ {4}\left(-\dfrac{1}{2}(x+7)\right)\\\color{#ff55c3}y+5&=-3\log_ {4}\left(-\dfrac{1}{2}(x+7)\right)\\\color{#ff55c3}y&=-3\log_ {4}\left(-\dfrac{1}{2}(x+7)\right)-5\end{align}||
-
Give the rule of the inverse
The inverse of the function |f(x)=-2(4)^{-\frac{1}{3}(x+5)}-7| is |f^{-1}(x)=-3\log_{4}\left(\!-\dfrac{1}{2}(x+7)\!\right)-5|
The following is the graph that shows the function |\color{#ec0000}{f(x)}| and its inverse, |\color{#3b87cd}{f^{-1}(x)}|
It is possible to sketch the inverse of a function by interchanging the coordinates |x| and |y| of certain points.
For example, in the following figure, we can study the function |\color{#EC0000}{f(x)=\dfrac{3}{2}(2)^{x-5}-2}| and its inverse, |\color{#3B87CD}{f^{-1}(x)=\log_2\left(\dfrac{2}{3}(x+2)\right)+5}.|
-
The y-intercept of |\color{#EC0000}{f(x)}| becomes the x-intercept of |\color{#3B87CD}{f^{-1}(x)}.|||\color{#EC0000}{(0,-1{.}95)}\ \rightarrow\ \color{#3B87CD}{(-1{.}95,0)}||
-
The x-intercept of |\color{#EC0000}{f(x)}| becomes the y- intercept of |\color{#3B87CD}{f^{-1}(x)}|||\color{#EC0000}{(5{.}42,0)}\ \rightarrow\ \color{#3B87CD}{(0,5{.}42)}||
-
Point |\color{#EC0000}{(7,4)}| becomes the point |\color{#3B87CD}{(4,7)}.|
The same is true for the asymptote. The horizontal asymptote of |\color{#EC0000}{f(x)}| becomes the vertical asymptote of |\color{#3B87CD}{f^{-1}(x)}.|
||\color{#EC0000}{y=-2}\ \rightarrow\ \color{#3B87CD}{x=-2}||
We can also say that |\color{#3B87CD}{f^{-1}(x)}| corresponds to the reflection of |\color{#EC0000}{f(x)}| with respect to the line |y=x.| It is therefore possible to graph the inverse by reflection, if the scale of the |x| and |y| axes have a ratio of |1:1.|