Content code
s1579
Slug (identifier)
equivalent-resistances
Grades
Secondary IV
Topic
Science and Technology
Tags
Resistance
circuit
équivalente
circuit en parallèle
parallèle
formule
résistance équivalente
résistance totale
résistance d'un circuit
résistance électrique
Content
Contenu
Content
Corps

The equivalent resistance, or total resistance, is the value of the resistance that would replace all the resistances in a circuit with a single resistance.

Corps

To determine the equivalent resistance of an electrical circuit, Kirchhoff's laws and Ohm's law must be used.

Title (level 2)
Series Circuit
Title slug (identifier)
series-circuit
Contenu
Corps

In a series circuit, the voltage values add up to give the total voltage:
||V_{tot} = V_{1} + V_{2} + V_{3} + ...|| Using Ohm's law, it is possible to substitute the voltage |(V)| with |RI| .
||R_{tot}I_{tot}= R_{1}I_{1} + R_{2}I_{2} + R_{3}I_{3} + ...|| In a series circuit, the current intensity is always the same. By eliminating the current intensity in each of the terms, we obtain the formula that can be used to calculate the equivalent resistance in a series circuit.

Content
Corps

The formula to use to calculate the equivalent resistance in an electrical circuit is:  
|R_{eq} = R_{1} + R_{2} + R_{3} + ...|

Corps

The equivalent resistance in a series circuit is therefore equivalent to the sum of the resistances in the circuit.

Content
Corps

What is the equivalent resistance in the following circuit?

Image
image
Corps

To determine the equivalent resistance, simply use the formula and replace the variables with the known values.
||\begin{align} R_{eq}= R_{1} + R_{2} + R_{3} \quad \Rightarrow \quad R_{eq}&= 20 \:\Omega+30\:\Omega+40\:\Omega \\&= 90 \:\Omega \end{align}||

Content
Corps

What is the value, in ohms, of the third resistance in the following circuit?

Image
image
Corps

To determine the missing resistance, use the equivalent resistance formula and isolate the missing variable to find the answer.
||\begin{align} R_{eq}= R_{1} + R_{2} + R_{3} + R_{4} \quad \Rightarrow \quad R_{3} &= R_{eq} - R_{1} - R_{2} - R_{4} \\ &= 400 \: \Omega - 80 \: \Omega - 120 \: \Omega - 60 \:\Omega \\ &= 140 \:\Omega \end{align}||

Title (level 2)
Parallel Circuit
Title slug (identifier)
parallel-circuit
Contenu
Corps

In a parallel circuit, the current values add up to give the total current in the electrical circuit:
||I_{tot} = I_{1} + I_{2} + I_{3} + ...|| Using Ohm's law, it is possible to substitute the intensity |(I)| with |\dfrac {V}{R}| .
||\displaystyle \frac {V_{tot}}{R_{tot}}= \frac {V_{1}}{R_{1}} + \frac {V_{2}}{R_{2}} + \frac {V_{3}}{R_{3}} + ...|| In a parallel circuit, the voltage is always the same. By eliminating the voltage in each of the terms, we obtain the formula which allows us to calculate the equivalent resistance in a parallel circuit.

Content
Corps

The formula to use to calculate the equivalent resistance in an electrical circuit is:  
|\displaystyle \frac {1}{R_{eq}} = \frac {1}{R_{1}} + \frac {1}{R_{2}} + \frac {1}{R_{3}} + ...|

Corps

It can be deduced from this formula that the equivalent resistance of a circuit will decrease each time a resistor is added in a parallel circuit.

Content
Corps

The value of the equivalent resistance in a parallel circuit will always be smaller than the value of the lowest resistance of the electrical circuit.

Content
Corps

What is the value of the equivalent resistance in the following parallel circuit?

Image
image
Corps

To determine the equivalent resistance, simply use the formula and replace the variables with the known values.
||\begin {align} \dfrac {1} {R_ {eq}} = \dfrac {1} {R_ {1}} + \dfrac {1} {R_ {2}} + \dfrac {1} {R_ {3 }} \quad \rightarrow \quad \dfrac {1} {R_ {eq}} & = \dfrac {1} {60 \: \Omega} + \dfrac {1} {30 \: \Omega} + \dfrac { 1} {20 \: \Omega} \\\dfrac {1} {R_ {eq}} & = \dfrac {6} {60 \: \Omega} \\r_ {eq} & = 10 \: \Omega \end {align} ||
As it was mentioned before, the equivalent resistance is smaller than the smallest resistance in this circuit |(10 \space \Omega < 20 \space \Omega)|.

Content
Corps

What should be the value of the resistance  |R_{1}| so that the equivalent resistance of this parallel circuit is equal to  |\small 150 \space \Omega| ?

Image
image
Corps

To determine the missing resistance, the equivalent resistance formula must be used and the missing variable isolated to find the answer.
||\begin{align} \frac{1}{R_{eq}}= \frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \Rightarrow \quad \frac{1}{R_{1}} &= \frac{1}{R_{eq}}-\frac{1}{R_{2}} \\\frac{1}{R_{1}} &= \frac{1}{150 \: \Omega}-\frac{1}{250 \: \Omega} \\ \frac{1}{R_{1}}&= \frac{4}{1\:500 \: \Omega} \\ R_{1} &= 375 \:\Omega \end{align} ||

Title (level 2)
Exercises
Title slug (identifier)
exercises
Contenu
Contenu
Corps

Pour valider ta compréhension à propos des calculs dans les circuits électriques de façon interactive, consulte la MiniRécup suivante :

MiniRécup Sciences
Remove audio playback
No