Content code
m1060
Slug (identifier)
properties-of-operations
Parent content
Grades
Secondary I
Secondary II
Equivalent file in the opposite grade group
Topic
Mathematics
Tags
inverse
opposite
Content
Contenu
Corps

Basic arithmetic operations have a number of properties.

Links
Title (level 2)
Associativity
Title slug (identifier)
associativity
Contenu
Content
Corps

Associativity is a property of operations that allows the order of the calculations to be changed by grouping terms together using brackets, without changing the answer of the operation.

This property applies to both addition and multiplication.

Corps

The order of operations applies in the examples below. The calculation in brackets must always be performed first.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Associativity of addition||\begin{align}(10+20)+30&=10+(20+30)\\ 30+30&=10+50\\60&=60\end{align}||

Second column
Corps

Associativity of multiplication||\begin{align}(10\times20)\times30&=10\times(20\times30)\\ 200\times30&=10\times600\\6000&=6000\end{align}||

Content
Corps

Subtraction and division are not associative operations.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}(30-20)-10&\overset{?}{=}30-(20-10)\\ 10-10&\overset{?}{=}30-10\\0&\color{#ec0000}{\large\neq}20\end{align}||

Second column
Corps

||\begin{align}(100\div20)\div5&\overset{?}{=}100\div(20\div5)\\ 5\div5&\overset{?}{=}100\div4\\1&\color{#ec0000}{\large\neq}25\end{align}||

Title (level 2)
Commutativity
Title slug (identifier)
commutativity
Contenu
Content
Corps

Commutativity is a property of operations that allows the order of terms to be changed without changing the answer.

This property applies to addition and multiplication.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Commutativity of addition||\begin{align}2+3&=3+2\\5&=5\end{align}||

Second column
Corps

Commutativity of multiplication||\begin{align}2\times3&=3\times2\\6&=6\end{align}||

Content
Corps

Subtraction and division are not commutative operations.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}10-2&\overset{?}{=}2-10\\8&\color{#ec0000}{\large\neq}-8\end{align}||

Second column
Corps

||\begin{align}10\div2&\overset{?}{=}2\div10\\5&\color{#ec0000}{\large\neq}0.2\end{align}||

Title (level 2)
Distributivity
Title slug (identifier)
distributivity
Contenu
Title (level 3)
Distributivity of Multiplication
Title slug (identifier)
distributivity-multiplication
Content
Corps

Distributivity of multiplication is a property of operations that allows multiplication to be distributed over addition or subtraction.

Content
Corps

The distributivity of multiplication transforms a multiplication of sums (or differences) into an addition (or subtraction) of products.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The distributivity of multiplication over addition||\begin{align}\color{#3b87cd}{\boldsymbol{2\ \times}}\ (10\color{#fa7921}+5)&=\color{#3b87cd}{\boldsymbol{2\ \times}}\ 10\color{#fa7921}+\color{#3b87cd}{\boldsymbol{2\ \times}}\ 5\\2\times15&=20+10\\30&=30\end{align}||

Second column
Corps

The distributivity of multiplication over subtraction||\begin{align}\color{#3b87cd}{\boldsymbol{2\ \times}}\ (10\color{#fa7921}{\large-}5)&=\color{#3b87cd}{\boldsymbol{2\ \times}}\ 10\color{#fa7921}{\large-}\color{#3b87cd}{\boldsymbol{2\ \times}}\ 5\\2\times5&=20-10\\10&=10\end{align}||

Content
Corps

The distributivity of multiplication can be helpful when performing mental calculations. For example, if we want to find the product of |22 \times 13,| we can rewrite the number |13| as the sum of |10+3| and distribute the multiplication by |22.| The multiplication then becomes a sum of |2| multiplications which are easier to do mentally.||\begin{align}22 \times 13 &= 22 \times (10+3)\\&=22 \times 10+ 22 \times 3 \\&= 220+66\\&=286\end{align}||

Content
Corps

The distributivity of multiplication only applies to addition and subtraction. You cannot distribute a multiplication over another multiplication. Here's an example to prove this:||\begin{align}\color{#3b87cd}{\boldsymbol{2\ \times}}\ (10\color{#fa7921}\times5)&\overset{?}{=}\color{#3b87cd}{\boldsymbol{2\ \times}}\ 10\ \color{#fa7921}\times\ \color{#3b87cd}{\boldsymbol{2\ \times}}\ 5\\2\times50&\overset{?}{=}20\times 10\\100&\color{#ec0000}{\large\neq}200\end{align}||

Title (level 3)
Distributivity of Division
Title slug (identifier)
distributivity-division
Content
Corps

The distributivity of division is the property of operations that allows you to distribute the same divisor over each term in an addition or subtraction.

Content
Corps

The distributivity of division transforms a division of sums (or differences) into an addition (or subtraction) of quotients.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The distributivity of division over addition||\begin{align}(10\color{#fa7921}+15)\color{#3b87cd}{\boldsymbol{\div5}}&=10\color{#3b87cd}{\boldsymbol{\div5}}\color{#fa7921}+15\color{#3b87cd}{\boldsymbol{\div5}}\\25\div5&=2+3\\5&=5\end{align}||

Second column
Corps

The distributivity of division over subtraction||\begin{align}(60\color{#fa7921}-15)\color{#3b87cd}{\boldsymbol{\div3}}&=60\color{#3b87cd}{\boldsymbol{\div3}}\color{#fa7921}-15\color{#3b87cd}{\boldsymbol{\div3}}\\45\div3&=20-5\\15&=15\end{align}||

Content
Corps

Division is only distributive when the addition or subtraction is the dividend. It is not distributive if the addition or subtraction is the divisor. Here's an example to prove this:||\begin{align}30\div(3+2)&\overset{?}{=}(30\div3)+(30\div2)\\30\div5&\overset{?}{=}10+15\\6&\color{#ec0000}{\large\neq}25\end{align}||

Content
Corps

The same property applies when the division is written in the form of a fraction.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Addition is in the numerator (dividend)||\begin{align}\dfrac{20+30}{5}&=\dfrac{20}{5}+\dfrac{30}{5}\\\dfrac{50}{5}&=4+6\\10&=10\end{align}||

Second column
Corps

Addition is in the denominator (divisor)||\begin{align}\dfrac{60}{2+3}&\overset{?}{=}\dfrac{60}{2}+\dfrac{60}{3}\\\dfrac{60}{5}&\overset{?}{=}30+20\\12&\color{#ec0000}{\large\neq}50\end{align}||

Title (level 3)
Distributivity in Algebraic Expressions
Title slug (identifier)
distributivity-algebraic-expressions
Corps

Like the distributivity of numbers, the distributivity of algebraic expressions applies to each term inside the brackets when multiplying or dividing algebraic expressions.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{alignat}{20}2(2y+3)&=2&&\times2y&&+2&&\times3\\&=&&\ 4y&&\ +&&\ 6\end{alignat}||

Second column
Corps

||\begin{align}\boldsymbol{\color{#3b87cd}{-}}(2x+5y-10)&=\boldsymbol{\color{#3b87cd}{-1\,\times}}\,(2x+5y-10)\\&=(\boldsymbol{\color{#3b87cd}{-1\,\times}}\, 2x)+(\boldsymbol{\color{#3b87cd}{-1\,\times}}\, 5y)-(\boldsymbol{\color{#3b87cd}{-1\,\times}}\, 10)\\&=-2x+-5y--10\\&=-2x\ -\ \ 5y\ \, +\ \,10\end{align}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{alignat}{20}\dfrac{21a+35}{7} &= \dfrac{21a}{7} &&+ \dfrac{35}{7} \\&=\ \ 3a&&+\ \ 5\end{alignat}||

Second column
Corps

||\begin{alignat}{20}\dfrac{6(10+b)}{2}&=\dfrac{6\times 10+6\times b}{2}\\&=\dfrac{60+6b}{2}\\&=\dfrac{60}{2}+\dfrac{6b}{2}\\&=\ 30\,+\ 3b\end{alignat}||

Title (level 2)
The Neutral (Identity) Element
Title slug (identifier)
neutral-element
Contenu
Content
Corps

The identity element, or neutral element, is a number that, when used in an operation on another number, results in the other number itself.

For addition and subtraction, the neutral element is |0,| whereas for multiplication and division, the neutral element is |1.|

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Neutral element of addition||\begin{align}3+0&=3\\ -62+0& =-62\end{align}||

Second column
Corps

Neutral element of subtraction||\begin{align}5-0&=5\\ -14-0&=-14\end{align}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

Neutral element of multiplication||\begin{align}15\times1&=15\\ \dfrac{2}{3}\times1&=\dfrac{2}{3}\end{align}||

Second column
Corps

Neutral element of division||\begin{align}8\div1&=8\\ \dfrac{3}{4}\div1&=\dfrac{3}{4}\end{align}||

Content
Corps

Addition and multiplication are commutative operations. This means that the neutral (identity) element can be found in any position in an addition or multiplication operation.

On the other hand, since subtraction and division are not commutative operations, the neutral element only works when it is located to the right of the subtraction or division.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\boldsymbol{\color{#3b87cd}{10}}-0&=\boldsymbol{\color{#3b87cd}{10}}\\ 0-\boldsymbol{\color{#3b87cd}{10}}&= \boldsymbol{\color{#ec0000}{-10}}\ \text{and not}\ \boldsymbol{\color{#3b87cd}{10}} \end{align}||

Second column
Corps

||\begin{align}\boldsymbol{\color{#3b87cd}{2}}\div 1&=\boldsymbol{\color{#3b87cd}{2}}\\ 1\div\boldsymbol{\color{#3b87cd}{2}}&= \boldsymbol{\color{#ec0000}{0.5}}\ \text{and not}\ \boldsymbol{\color{#3b87cd}{2}} \end{align}||

Content
Corps

When reducing algebraic expressions, we generally don't write the neutral elements.

Columns number
3 columns
Format
33% / 33% / 33%
First column
Corps

If we obtain |0| as the coefficient for a term, we don't write out the term, since |0| is the neutral element of addition and subtraction.||\begin{align}5x+2y-2x-3x&=\boldsymbol{\color{#3b87cd}{0x}}+2y\\&=2y\end{align}||

Second column
Corps

If we obtain |1| as the coefficient for a term, we don't write this coefficient, since |1| is the neutral element of multiplication.||\begin{align}5x+2y-4x&=\boldsymbol{\color{#3b87cd}{1}}x+2y\\&=x+2y\end{align}||

Third column
Corps

If we obtain |1| as the denominator, we don't write it since |1| is the neutral element of division.||\begin{align}\dfrac{6x}{2}&=\dfrac{3x}{\boldsymbol{\color{#3b87cd}{1}}}\\&=3x\end{align}||

Corps

In addition, the neutral (identity) element is obtained by adding a number with its opposite. For a multiplication, the neutral element is obtained by multiplying a number by its reciprocal.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}1 + (-1) &= 0\\ -\dfrac{4}{3} + \dfrac{4}{3}&=0\end{align}||

Second column
Corps

\begin{align}6\times \dfrac{1}{6}&=1\\ \dfrac{2}{5} \times \dfrac{5}{2} &= 1\end{align}

Title (level 2)
The Absorbing Element
Title slug (identifier)
absorbing-element
Contenu
Content
Corps

The absorbing element, or annihilating element, is the number which, when combined by an operation with all the other numbers, gives the absorbing element.

The absorbing element for multiplication and division is |0.|

Content
Corps

If we take |0| and multiply or divide it by any other number, the answer is always |0.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

Absorbing element of multiplication||\begin{align}10 \times 0&=0\\ 3 \times 5 \times 0 \times 2 &= 0\end{align}||

Second column
Corps

Absorbing element of division||\begin{align}0 \div 14 &= 0\\ 0 \div \dfrac{1}{5}&=0\end{align}||

Content
Corps
  • Multiplication is a commutative operation. This means that the absorbing element can be found in any position of the multiplication.

    On the other hand, since division is not a commutative operation, the absorbing element must always be placed to the left of the division, because it is impossible to divide by |0.|||\begin{align}&0\div9= 0\\ &\boldsymbol{\color{#ec0000}{9\div0\rightarrow\ \textbf{Impossible}}}\end{align}||

  • Addition and subtraction have no absorbing element.

Title (level 2)
Exercise
Title slug (identifier)
exercise
Contenu
Contenu
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No
Printable tool
Off