Content code
m1285
Slug (identifier)
thales-theorem
Grades
Secondary IV
Topic
Mathematics
Tags
transversal lines
intersecting transversal lines
parallel lines
Thales of Miletus
similar triangles
Content
Contenu
Corps

Thales' theorem is very useful when finding one or more missing measurements in a figure formed by intersecting transversals that cross parallel lines.

Content
Columns number
3 columns
Format
33% / 33% / 33%
First column
Corps

If, in a figure…

  • lines |\color{#3a9a38}{BD}| and |\color{#3b87cd}{CE}| are transversals that intersect at |A,|

  • lines |\color{#ec0000}{BC}| and |\color{#ec0000}{DE}| are parallel,

then the following proportion exists:
||\color{#3a9a38}{\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}}}=\color{#3b87cd}{\dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}}}= \color{#ec0000}{\dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}}||

Second column
Image
One configuration of Thales' theorem: 2 parallel lines cut by 2 intersecting transversals.
Third column
Image
Another configuration of Thales' theorem: the transversals intersect inside the parallel lines.
Corps

Note: Thales' theorem applies regardless of whether the transversals |(\color{#3b87cd}{EC}| and |\color{#3a9a38}{BD})| intersect inside or outside the parallel lines |\color{#ec0000}{ED}| and |\color{#ec0000}{BC}).|​​

Contenu
Title
How did Thales of Miletus calculate the height of the pyramids?
Content
Content
Corps

Thales' theorem originates from Thales of Miletus, an ancient scholar who lived around 600 BC. Here is the method he used to calculate the height of certain Egyptian pyramids using the shadow they cast.

To measure the height of the pyramid, a person must stand so that his or her shadow is aligned with the shadow of the pyramid. This produces two similar triangles. Then just establish the correct proportion and solve it.

Image
Thales' theorem: similar triangles formed by the shadow of a pyramid.
Corps

According to Thales' theorem, since the height of the person and the height of the pyramid are parallel segments, we can use the following ratio.
||\dfrac{\begin{gather}\text{Height of}\\\text{the person}\end{gather}}{\begin{gather}\text{Height of}\\\text{the pyramid}\end{gather}}=\dfrac{\begin{gather}\text{Shadow of}\\\text{the person}\end{gather}}{\begin{gather}\text{Shadow of the pyramid}\\\text{+ half of its base}\end{gather}}||
Using this method, you can find the height of anything, such as the height of a house or school. Give it a try!

Links
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Si, dans une figure…

  • … les droites |\color{#3a9a38}{BD}| et |\color{#3b87cd}{CE}| sont sécantes en |A;|

  • … les droites |\color{#ec0000}{BC}| et |\color{#ec0000}{DE}| sont parallèles,

alors, on a la proportion suivante.||\color{#3a9a38}{\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}}}=\color{#3b87cd}{\dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}}}= \color{#ec0000}{\dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}}||

Second column
Image
Configuration du théorème de Thalès : 2 droites parallèles coupées par 2 sécantes.
Image
Autre configuration du théorème de Thalès : les sécantes se croisent entre les parallèles.
Corps

Remarque : Le théorème de Thalès s'applique peu importe si les sécantes |(\color{#3b87cd}{EC}| et |\color{#3a9a38}{BD})| se croisent à l’extérieur ou à l’intérieur des parallèles |(\color{#ec0000}{ED}| et |\color{#ec0000}{BC}).|

Title (level 2)
Proof of Thales’ Theorem
Title slug (identifier)
proof
Contenu
Corps

Thales' theorem is based on the proportions of corresponding sides in similar triangles. It is proven by showing that |\triangle ABC \sim \triangle ADE| using the minimum condition for similarity AA.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Hypothesis

Consider distinct parallel lines |\color{#ec0000}{BC}| and |\color{#ec0000}{DE},| as well as intersecting transversals |\color{#3a9a38}{AB}| and |\color{#3b87cd}{AC}.|

Conclusion
||\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}} = \dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}} = \dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}||

Second column
Image
Configuration of Thales’ Theorem: 2 parallel lines cut by 2 intersecting transversals.
Corps

Proof

Statement Justification

1

Angles |DAE| and |BAC| are congruent.||\angle DAE\cong\angle BAC||

A

It is an angle common to both triangles.

2

Angles |ADE| and |ABC| are congruent.||\angle ADE\cong\angle ABC||

A

Corresponding angles formed by parallel lines |(\color{#ec0000}{BC}| and |\color{#ec0000}{DE})|, cut by a transversal |(\color{#3a9a38}{AB})| are congruent.

3

Triangles |ABC| and |ADE| are similar.||\triangle ABC\sim\triangle ADE||

They satisfy the minimum condition AA: two triangles are similar if they have 2 pairs of corresponding congruent angles.

4

||\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}} = \dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}} = \dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}||

The corresponding sides of similar triangles are proportional.

Corps

The proof of Thales' theorem when the intersection point |(A)| of the transversals is situated inside the 2 parallel lines is also established using the minimum condition of similarity AA.

Contenu
Title
The Proof of Thales’ Theorem When the Intersection Point of the Transversals is Situated Inside the Parallel Lines.
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Hypothesis

Consider the distinct parallel lines |\color{#ec0000}{BC}| and |\color{#ec0000}{DE},| as well as the intersecting transversals |\color{#3a9a38}{AB}| and |\color{#3b87cd}{AC}.|

Conclusion
||\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}} = \dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}} = \dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}||

Second column
Image
Another configuration of Thales' theorem: the transversals intersect between the parallel lines.
Corps

Proof

Statement Justification

1

Angles |DAE| and |BAC| are congruent.||\angle DAE\cong\angle BAC||

A

They are vertically opposite angles.

2

Angles |ADE| and |ABC| are congruent.||\angle ADE\cong\angle ABC||

A

Alternate-interior angles formed by parallel lines |(\color{#ec0000}{BC}| and |\color{#ec0000}{DE}),| cut by a transversal |(\color{#3a9a38}{BD}),| are congruent.

3

Triangles |ABC| and |ADE| are similar.||\triangle ABC\sim\triangle ADE||

They satisfy the minimum condition AA: triangles are similar if they have 2 pairs of corresponding congruent angles.

4

||\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}} = \dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}} = \dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}||

The corresponding sides of similar triangles are proportional.

Title (level 2)
Finding Missing Measurements Using Thales’ Theorem
Title slug (identifier)
missing-measurements
Contenu
Corps

Once we know that there are 2 parallel lines cut by 2 intersecting transversals, we can use Thales' theorem to solve the proportion in the triangles without having to prove that they are similar.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Find the missing measurement, given that lines |\color{#ec0000}{ED}| and |\color{#ec0000}{BC}| are parallel.

Second column
Image
Thales’ Theorem: the missing measurement is sought.
Corps

According to Thales’ theorem, since lines |\color{#ec0000}{ED}| and |\color{#ec0000}{BC}| are parallel, the following proportion exists:
||\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}}= \dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}}= \dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}||
To find |\text{m}\overline{BC},| we can solve the following equation:
||\begin{align}\dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}}&= \dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}\\ \dfrac{2}{4}&=\dfrac{4}{\text{m}\overline{BC}}\\\\ \text{m}\overline{BC}&=\dfrac{4\times 4}{2}\\&=8\end{align}||
Answer: |\text{m}\overline{BC} = 8\ \text{units}|

Title (level 2)
The Converse of Thales’ Theorem
Title slug (identifier)
converse
Contenu
Corps

In the situations associated with Thales' theorem, if the lines are parallel, then a proportion can be derived. However, it is also possible to apply the opposite reasoning, in other words, if the proportion is valid, then we can conclude that the lines are parallel. This is called the converse of Thales' theorem.

Contenu
Title
The Proof of the Converse of Thales' Theorem
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Hypothesis

Transversal lines |\color{#3a9a38}{BD}| and |\color{#3b87cd}{CE},| intersecting at |A,| are placed so that the following proportion is respected.
||\color{#3a9a38}{\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}}}=\color{#3b87cd}{\dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}}}= \color{#ec0000}{\dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}}||

Conclusion

Lines |\color{#ec0000}{BC}| and |\color{#ec0000}{DE}| are parallel.

Second column
Image
Another configuration of Thales' theorem: the transversals intersect inside the parallel lines.
Corps

Proof

Statement Justification

1

Triangles |ABC| and |ADE| are similar. ||\triangle ABC \sim \triangle ADE||

By hypothesis, the corresponding sides of triangles |ABC| and |ADE| are proportional. They therefore respect the minimum condition SSS: triangles are similar if the measures of their corresponding sides are proportional.

2

Angles |ADE| and |ABC| are congruent. ||\angle ADE\cong\angle ABC||

The corresponding angles of similar triangles are congruent.

3

Lines |\color{#ec0000}{BC}| and |\color{#ec0000}{DE}| are parallel.
||\color{#ec0000}{BC}\parallel \color{#ec0000}{DE}||

Two lines |(\color{#ec0000}{BC}| and |\color{#ec0000}{DE}),| cut by a transversal |(\color{#3a9a38}{BD}),| form congruent alternate-interior angles |(\angle ADE| and |\angle ABC),| if and only if these lines are parallel.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Given that transversal lines |\color{#3b87cd}{EC}| and |\color{#3a9a38}{BD}| intersect at |A,| prove that lines |\color{#ec0000}{ED}| and |\color{#ec0000}{BC}| are parallel.

Second column
Image
The converse of Thales’ theorem.
Corps

We must verify if the proportion of Thales' theorem between the corresponding sides of the triangles |ADE| and |ABC| is true. If we show that the 3 ratios are equivalent, then we can conclude that the lines are parallel.
||\begin{align}\color{#3a9a38}{\dfrac{\text{m}\overline{AD}}{\text{m}\overline{AB}}}&=\color{#3b87cd}{\dfrac{\text{m}\overline{AE}}{\text{m}\overline{AC}}}= \color{#ec0000}{\dfrac{\text{m}\overline{DE}}{\text{m}\overline{BC}}}\\ \color{#3a9a38}{\dfrac{4}{8.9}}\quad &\neq\quad\color{#3b87cd}{\dfrac{2}{4}}\quad \neq\quad\color{#ec0000}{\dfrac{3}{6.8}}\end{align}||
Conclusion: Since the 3 ratios are not equal, lines |\color{#ec0000}{ED}| and |\color{#ec0000}{BC}| are not parallel.

Title (level 2)
Generalization of Thales’ Theorem
Title slug (identifier)
generalization
Contenu
Corps

When we have several parallel lines intersected by 2 transversals, it is possible to use the generalized Thales' theorem.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Given that, in a figure:

  • lines |\color{#ec0000}{AA’},| |\color{#ec0000}{BB’}| and |\color{#ec0000}{CC’}| are parallel

  • points |A,| |B| and |C| are aligned

  • points |A’,| |B’| and |C’| are aligned

then the following proportion exists:
||\dfrac{\color{#3b87cd}{\text{m}\overline{A’B’}}}{\color{#3a9a38}{\text{m}\overline{AB}}} = \dfrac{\color{#3b87cd}{\text{m}\overline{B’C’}}}{\color{#3a9a38}{\text{m}\overline{BC}}} = \dfrac{\color{#3b87cd}{\text{m}\overline{A’C’}}}{\color{#3a9a38}{\text{m}\overline{AC}}}||

Second column
Image
The generalized Thales theorem configuration.
Content
Corps

In the generalized Thales' theorem, we cannot establish a proportion between the segments located on the parallel lines |(AA’,| |BB’| and |CC’).|
||\dfrac{\text{m}\overline{AA’}}{\text{m}\overline{BB'}}\boldsymbol{\color{#ec0000}\neq} \dfrac{\text{m}\overline{BB’}}{\text{m}\overline{CC'}}\boldsymbol{\color{#ec0000}\neq} \dfrac{\text{m}\overline{AA’}}{\text{m}\overline{CC'}}||

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Given that lines |\color{#ec0000}{AA’},| |\color{#ec0000}{BB’}| and |\color{#ec0000}{CC’}| are parallel, find |\text{m}\overline{B'C'}.|

Second column
Image
Application of the generalized Thales’ theorem: a missing measure is sought.
Corps

According to the generalized Thales’ theorem, since the lines |\color{#ec0000}{AA’},| |\color{#ec0000}{BB’}| and |\color{#ec0000}{CC’}| are parallel, the following proportion can be applied: ||\dfrac{\color{#3b87cd}{\text{m}\overline{A’B’}}}{\color{#3a9a38}{\text{m}\overline{AB}}} = \dfrac{\color{#3b87cd}{\text{m}\overline{B’C’}}}{\color{#3a9a38}{\text{m}\overline{BC}}} = \dfrac{\color{#3b87cd}{\text{m}\overline{A’C’}}}{\color{#3a9a38}{\text{m}\overline{AC}}}||
To find |\text{m}\overline{B’C’},| we solve the following equation:
||\begin{align}\dfrac{\color{#3b87cd}{\text{m}\overline{A'B'}}}{\color{#3a9a38}{\text{m}​\overline{AB}}}&= \dfrac{\color{#3b87cd}{\text{m}\overline{B'C'}}}{\color{#3a9a38}{\text{m}\overline{BC}}}\\ \dfrac{\color{#3b87cd}{2.2}}{\color{#3a9a38}{2.1}}&= \dfrac{\color{#3b87cd}{x}}{\color{#3a9a38}{3.15}}\\\\ x&=\dfrac{3.15\times 2.2}{2.1}\\&=3.3\end{align}||
Answer: |\text{m}\overline{B’C’}=3.3\ \text{units}|

Title (level 2)
Exercise
Title slug (identifier)
exercise
Contenu
Contenu
Title (level 2)
See also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No
Printable tool
Off