Content code
p1092
Slug (identifier)
summary-of-urm-and-uarm-characteristics
Parent content
Grades
Secondary V
Topic
Physics
Tags
URM
UARM
URM and UARM
URM graph
UARM graph
Content
Contenu
Corps

The following graphs summarise the two main motions studied in physics: uniform rectilinear motion (URM ) and uniformly accelerated rectilinear motion (UARM). Free fall has the same characteristics as UARM, while projectile motion is a combination of horizontal motion in URM and vertical motion in free fall.

​URM ​UARM

Position as a function of time

Velocity as a function of time
Acceleration as a function of time
Title (level 2)
The Equation of Uniform Rectilinear Motion
Title slug (identifier)
equation-of-uniform-rectilinear-motion
Contenu
Content
Corps

To determine the velocity of an object performing a URM, the following formula must be used:
|\overrightarrow{v}=\displaystyle \frac{\triangle \overrightarrow{x}}{\triangle t}|
where
|\overrightarrow{v}| represents the object's velocity (in |\small \text {m/s}|)
|\triangle \overrightarrow{x}| represents the 
displacement of the object (in |\small \text {m}|)
|\triangle t| represents the variation in time (in |\small \text {s}|)

Corps

As we can see from the equation above, velocity and displacement are vectors. We can therefore deduce that the orientation of velocity will always be the same as that of displacement and vice versa.

Title (level 2)
The Equations of Uniformly Accelerated Rectilinear Motion (UARM)
Title slug (identifier)
equation-uniformly-accelerated-rectilinear-motion
Contenu
Content
Corps
|v_{average}=\displaystyle \frac{\triangle x}{\triangle t}| |a=\displaystyle \frac{\triangle v}{\triangle t}|​
​|v_{f}=v_{i} + a \cdot {\triangle t}| |\triangle x= v_{i} \cdot \triangle t +\displaystyle \frac{1}{2} \cdot a \cdot {\triangle t}^{2}|
|\triangle x= \displaystyle \frac{(v_{i} + v_{f}) \cdot {\triangle t}}{2}|​ ​|\triangle x= v_{f} \cdot \triangle t -\displaystyle \frac{1}{2} \cdot a \cdot {\triangle t}^{2}|
​|{v_{f}}^2={v_{i}}^2+2 \cdot a \cdot \triangle x|​  
Corps

In these formulas, the following variables are used:

Variable ​Definition Units
​|\triangle x = x_{f} - x_{i}| ​Variation in position (distance travelled or displacement)
= final position - initial position
​meters |\text {(m)}|
​|v_{\text{average}}| ​Average velocity ​meters per second |\text {(m/s)}|
​|v_{i}| Initial velocity ​meters per second |\text {(m/s)}|
​|v_{f}| Final velocity ​meters per second |\text {(m/s)}|
​|a| ​Acceleration

​meters per square second |(\text {m/s}^2)|

​|\triangle t = t_{f} - t_{i}| Time variation = final time - initial time ​seconds |\text {(s)}|

 

Remove audio playback
No
Printable tool
Off