Content code
m1133
Slug (identifier)
finding-the-rule-of-a-square-root-function
Parent content
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
square root
radical
square root function
irrational function
algebraic rule
vertex coordinates
function point
Content
Contenu
Content
Corps

We distinguish between 2 different cases when looking for the rule of a square root function in the standard form: either its vertex is located at the origin of the Cartesian plane, or it is located elsewhere.

In both cases, the simplified form of the rule can be used. In this way, parameter |\color{#EC0000}{b}| will only be |\color{#EC0000}{-1}| or |\color{#EC0000}{1}|.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The vertex is at the origin
||a\sqrt{\color{#EC0000}{b}x}\Rightarrow a\sqrt{\color{#EC0000}{\pm}x}||

Second column
Corps

The vertex is not at the origin
||a\sqrt{\color{#EC0000}{b}(x-h)}+k\Rightarrow a\sqrt{\color{#EC0000}{\pm}(x-h)}+k||

Contenu
Title
Proof of the Simplified Form
Content
Content
Corps

It can be proven why, in the square root function, it is possible to use the simplified form of the rule by assuming parameter |\color{#EC0000}{b}| is equal to |\color{#EC0000}{\pm1}.|

Consider |f(x)=a\sqrt{\color{#EC0000}{b}(x-h)}+k.| Using the properties of the radicals, we can perform the following calculations.

||\begin{gather}\begin{aligned}f(x)&=\color{#3B87CD}{a}\sqrt{\color{#EC0000}{b}(x-h)}+k\\f(x)&=\color{#3B87CD}{a}\sqrt{\color{#EC0000}{\pm\vert b\vert}(x-h)}+k\\f(x)&=\color{#3B87CD}{a}\sqrt{\color{#EC0000}{\vert b\vert}\vphantom{(}}\sqrt{\color{#EC0000}{\pm}(x-h)}+k\\f(x)&=\color{#C58AE1}{\text{a}}\sqrt{\color{#EC0000}{\pm}(x-h)}+k\end{aligned}\\\text{where}\\\color{#C58AE1}{\text{a}}=\color{#3B87CD}{a}\sqrt{\color{#EC0000}{\vert b\vert}}\end{gather}||

Links
Title (level 2)
The Vertex is at the Origin
Title slug (identifier)
case-vertex
Contenu
Corps

The following is the procedure to find the rule of a square root function when the vertex is at the origin of the Cartesian plane and the coordinates of another point are known.

Content
Corps
  1. Determine the value of |\color{#EC0000}{b}| based on the role of the parameters. If the curve lies to the right of the vertex, then |\color{#EC0000}{b}=\color{#EC0000}{1}.| However, if the curve lies to the left of the vertex, then |\color{#EC0000}{b}=\color{#EC0000}{-1}.|

  2. Replace |\color{#3A9A38}{x}| and |\color{#3A9A38}{f(x)}| with the coordinates of a point other than the vertex to form an equation.

  3. Calculate the value of parameter |\color{#3b87CD}{a}.|

  4. Give the rule of the function.

Content
Corps

Determine the rule for the following square root function.

Image
A square root function whose vertex is the origin and a point.
Corps
  1. Determine if |b| is worth |1| or |-1|
    Point |(\color{#3A9A38}{-9},\color{#3A9A38}{15})| is to the left of the vertex, which implies that |\color{#EC0000}{b}| is negative.
    ||\begin{align}f(x)&=a\sqrt{\color{#EC0000}{b}x}\\f(x)&=a\sqrt{\color{#EC0000}{-1}x}\\f(x)&=a\sqrt{-x}\\\end{align}||

  2. Replace |x| and |f(x)| with the coordinates of a point
    ||\begin{align}\color{#3A9A38}{f(x)}&=a\sqrt{-\color{#3A9A38}{x}}\\\color{#3A9A38}{15}&=a\sqrt{-\color{#3A9A38}{-9}}\end{align}||

  3. Calculate the value of parameter |a|
    ||\begin{align}15&=\color{#3b87CD}{a}\sqrt{--9}\\15&=\color{#3b87CD}{a}\sqrt{9}\\15&=3\color{#3b87CD}{a}\\\color{#3b87CD}{5}&=\color{#3b87CD}{a}\end{align}||

  4. Give the rule
    The rule for this square root function is |f(x)=5\sqrt{-x}.|

Title (level 2)
The Vertex is not at the Origin
Title slug (identifier)
case-not-vertex
Contenu
Corps

The following is the procedure to find the rule of a square root function when the vertex is not at the origin of the Cartesian plane and the coordinates of another point are known.

Content
Corps
  1. Replace |\color{#51B6C2}{h}| and |\color{#FA7921}{k}| in the rule with the coordinates of the vertex.

  2. Determine the value of |\color{#EC0000}{b}| based on the role of the parameters. If the curve lies to the right of the vertex, then |\color{#EC0000}{b}=\color{#EC0000}{1}.| However, if the curve lies to the left of the vertex, then |\color{#EC0000}{b}=\color{#EC0000}{-1}.|

  3. Replace |\color{#3A9A38}{x}| and |\color{#3A9A38}{f(x)}| with the coordinates of a point other than the vertex to form an equation.

  4. Calculate the value of parameter |\color{#3b87CD}{a}.|

  5. Give the rule of the function.

Content
Corps

Determine the rule for the following square root function.

Image
A square root function whose vertex is not the origin and a point.
Corps
  1. Replace |h| and |k| with the vertex coordinates
    ||\begin{align}f(x)&=a\sqrt{b(x-\color{#51B6C2}{h})}+\color{#FA7921}{k}\\f(x)&=a\sqrt{b(x-\color{#51B6C2}{-1})}+\color{#FA7921}{-3}\\f(x)&=a\sqrt{b(x+1)}-3\end{align}||

  2. Determine if |b| is worth |1| or |-1|
    Point |(\color{#3A9A38}{-5},\color{#3A9A38}{1})| is to the left of the vertex, which implies that |\color{#EC0000}{b}| is negative.
    ||\begin{align}f(x)&=a\sqrt{\color{#EC0000}{b}(x+1)}-3\\f(x)&=a\sqrt{\color{#EC0000}{-1}(x+1)}-3\\f(x)&=a\sqrt{-(x+1)}-3\end{align}||

  3. Replace |x| and |f(x)| with the coordinates of a point
    ||\begin{align}\color{#3A9A38}{f(x)}&=a\sqrt{-(\color{#3A9A38}{x}+1)}-3\\\color{#3A9A38}{1}&=a\sqrt{-(\color{#3A9A38}{-5}+1)}-3\end{align}||

  4. Calculate the value of parameter |a|
    ||\begin{align}1&=\color{#3b87CD}{a}\sqrt{-(-5+1)}-3\\1&=\color{#3b87CD}{a}\sqrt{4}-3\\1&=2\color{#3b87CD}{a}-3\\4&=2\color{#3b87CD}{a}\\\color{#3b87CD}{2}&=\color{#3b87CD}{a}\end{align}||

  5. Give the rule
    The rule for this square root function is |f(x)=2\sqrt{-(x+1)}-3.|

Corps

Sometimes, one of the vertex coordinates is not known. In this case, the coordinates of a second point on the curve are needed to form a system of 2 equations with 2 unknowns. The following example shows how to solve this kind of problem.

Content
Corps

Determine the rule for the following square root function.

Image
A square root function whose vertex is not the origin and two points.
Corps
  1. Replace |h|
    ||\begin{align}f(x)&=a\sqrt{b(x-\color{#51B6C2}{h})}+\color{#FA7921}{k}\\f(x)&=a\sqrt{b(x-\color{#51B6C2}{5})}+\color{#FA7921}{k}\end{align}||

  2. Determine if |b| is worth |1| or |-1|
    The two points provided are to the right of the vertex, which implies that |\color{#EC0000}{b}| is positive.
    ||\begin{align}f(x)&=a\sqrt{\color{#EC0000}{b}(x-5)}+k\\f(x)&=a\sqrt{\color{#EC0000}{1}(x-5)}+k\\f(x)&=a\sqrt{x-5}+k\end{align}||

  3. Replace |x| and |f(x)| with the coordinates of 2 points
    Since the parameters |\color{#3B87CD}{a}| and |\color{#FA7921}{k}| are unknown, we must form a system of 2 equations.

Columns number
2 columns
Format
50% / 50%
First column
Corps

First equation
||\begin{align}\color{#3A9A38}{f(x)}&=a\sqrt{\color{#3A9A38}{x}-5}+k\\ \color{#3A9A38}{-8}&=a\sqrt{\color{#3A9A38}{9}-5}+k\end{align}||

Second column
Corps

Second equation
||\begin{align}\color{#3A9A38}{f(x)}&=a\sqrt{\color{#3A9A38}{x}-5}+k\\ \color{#3A9A38}{-15}&=a\sqrt{\color{#3A9A38}{14}-5}+k\end{align}||

Corps
  1. Solve the system of equations to find the value of |a| and |k|
    The system of equations can now be solved. Isolate |\color{#FA7921}{k}| in the first equation, and then use the substitution method.

    ||\begin{align}-8&=\color{#3B87CD}{a}\sqrt{9-5}+\color{#FA7921}{k}\\-8&=\color{#3B87CD}{a}\sqrt{4}+\color{#FA7921}{k}\\-8&=2\color{#3B87CD}{a}+\color{#FA7921}{k}\\\color{#FA7921}{-8-2a}&=\color{#FA7921}{k}\\\end{align}||
    Substituting |\color{#FA7921}{k}| in the second equation results in the following. 

    ||\begin{align}-15&=\color{#3B87CD}{a}\sqrt{14-5}+\color{#FA7921}{k}\\-15&=\color{#3B87CD}{a}\sqrt{9}\color{#FA7921}{-8-2a}\\-7&=3\color{#3B87CD}{a}-2\color{#3B87CD}{a}\\\color{#3B87CD}{-7}&=\color{#3B87CD}{a}\\\end{align}||
    Finally, by replacing |\color{#3B87CD}{a}| in the first equation, we get the value of |\color{#FA7921}{k}.|

    ||\begin{align}-8-2\color{#3B87CD}{a}&=\color{#FA7921}{k}\\-8-2(\color{#3B87CD}{-7})&=\color{#FA7921}{k}\\\color{#FA7921}{6}&=\color{#FA7921}{k}\end{align}||

  2. Give the rule
    The rule for this square root function is |f(x)=-7\sqrt{x-5}+6.|

Title (level 2)
See also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No
Printable tool
Off