To prove a trigonometric identity, algebraic operations must be performed to simplify the expression. The goal is to prove that both sides of the equation are identical.
Here are some tips to prove trigonometric identities.
-
Work only on one side of the equation.
-
Convert everything in terms of sine and/or cosine. This simplifies the expression.
-
Try to obtain one or more of the basic trigonometric identities.
-
Put any fractions over a common denominator.
-
Remove the greatest common factor, or use other types of factoring to simplify the terms.
-
Multiply the numerator and denominator by the conjugate of either the numerator or denominator.
The following table presents the strategies used in each of the 7 examples found in this concept sheet.
Strategies used | Example 1 | Example 2 | Example 3 | Example 4 | Example 5 | Example 6 | Example 7 |
---|---|---|---|---|---|---|---|
Convert ratios into sine and/or cosine | x | x | x | x | x | x | x |
Convert sine and/or cosine into other ratios | x | x | |||||
Use pythagorean identities | x | x | x | x | x | x | |
Divide fractions | x | x | |||||
Put fractions on a common denominator | x | x | |||||
Factor | Greatest common factor | Perfect square trinomial and difference of squares |
Prove the following identity: |\sin^2\theta=1-\cot^2\theta\,\sin^2\theta.|
Simplify the right-hand side.
Start by rewriting everything in terms of |\sin| and |\cos,| and then simplify the resulting expression.||\begin{align}\sin^2\theta&=1-\cot^2\theta\,\sin^2\theta\\\\\sin^2\theta&=1-\dfrac{\cos^2\theta}{\color{#ec0000}{\cancel{\color{black}{\sin^2\theta}}}}\color{#ec0000}{\cancel{\color{black}{\sin^2\theta}}}\\\\\sin^2\theta&=1-\cos^2\theta\end{align}||By isolating |\sin^2\theta| in the 1st Pythagorean identity, we get the equation |\sin^2\theta=1-\cos^2\theta.| Substitute |1-\cos^2\theta| with |\sin^2\theta| on the right-hand side of the equation.||\sin^2\theta=\sin^2\theta||Both sides of the equation are identical. This proves the identity |\sin^2\theta=1-\cot^2\theta\,\sin^2\theta.|
Prove the following identity: |\dfrac{\sec x}{\cot x}=\dfrac{\sin x}{1-\sin^2 x}.|
This time, let’s work with the left-hand side of the equation. Rewrite it in terms of |\sin| and |\cos.|||\begin{align}\dfrac{\sec x}{\cot x}&=\dfrac{\sin x}{1-\sin^2 x}\\\\\dfrac{\dfrac{1}{\cos x}}{\dfrac{\cos x}{\sin x}}&=\dfrac{\sin x}{1-\sin^2 x}\end{align}||Divide the 2 fractions. Dividing by a fraction is equivalent to multiplying by its reciprocal.||\begin{align}\dfrac{1}{\cos x}\times\dfrac{\sin x}{\cos x}&=\dfrac{\sin x}{1-\sin^2 x}\\\\\dfrac{\sin x}{\cos^2 x}&=\dfrac{\sin x}{1-\sin^2 x}\end{align}||Isolating |\cos^2 x| from the identity |\cos^2 x+\sin^2 x=1,| gives the equation |\cos^2 x=1-\sin^2 x.| Substitute |\cos^2 x| with |1-\sin^2 x| in the fraction.||\begin{align}\dfrac{\sin x}{\boldsymbol{\color{#3a9a38}{\cos^2 x}}}=\dfrac{\sin x}{1-\sin^2 x}\\\\\dfrac{\sin x}{\boldsymbol{\color{#3a9a38}{1-\sin^2 x}}}=\dfrac{\sin x}{1-\sin^2 x}\end{align}||Both sides of the equation are identical. This proves the identity |\dfrac{\sec x}{\cot x}=\dfrac{\sin x}{1-\sin^2 x}.|
There is often more than one way to prove a trigonometric identity. In the previous example, we could have also worked with the right-hand side of the equation.||\begin{align}\dfrac{\sec x}{\cot x}&=\dfrac{\sin x}{1-\sin^2 x}\\\\\dfrac{\sec x}{\cot x}&=\dfrac{\sin x}{\cos^2 x}\\\\\dfrac{\sec x}{\cot x}&=\dfrac{1}{\cos x}\times\dfrac{\sin x}{\cos x}\\\\\dfrac{\sec x}{\cot x}&=\sec x\times\dfrac{1}{\cot x}\\\\\dfrac{\sec x}{\cot x}&=\dfrac{\sec x}{\cot x}\end{align}||
Prove the following identity: |\cos\theta\,\sqrt{\sec^2\theta-1}=\sin\theta.|
Let’s work with the left-hand side of the equation. Using the identity |1+\tan^2\theta=\sec^2\theta,| we get the equation |\tan^2\theta=\sec^2\theta-1.| We then substitute this in the left-hand side of the equation and simplify.||\begin{align}\cos\theta\,\sqrt{\boldsymbol{\color{#3a9a38}{\sec^2\theta-1}}}&=\sin\theta\\\cos\theta\,\sqrt{\boldsymbol{\color{#3a9a38}{\tan^2\theta}}}&=\sin\theta\\\cos\theta\,\tan\theta&=\sin\theta\end{align}||Replace tangent with the ratio |\dfrac{\sin\theta}{\cos\theta}| and simplify the expression obtained.||\begin{align}\cancel{\cos\theta}\,\dfrac{\sin\theta}{\cancel{\cos\theta}}&=\sin\theta\\\sin\theta&=\sin\theta\end{align}||Both sides of the equation are identical. This proves the identity |\cos\theta\,\sqrt{\sec^2\theta-1}=\sin\theta.|
Prove the following identity: |\dfrac{\cos^2\theta\,\tan\theta}{\cot\theta}=\sin^2\theta.|
Let’s work with the left-hand side of the equation. Rewrite it in terms of |\sin| and |\cos,| then simplify the resulting expression.||\begin{align}\dfrac{\cos^2\theta\,\tan\theta}{\cot\theta}&=\sin^2\theta\\\\\dfrac{\cos^2\theta\times\dfrac{\sin\theta}{\cos\theta}}{\dfrac{\cos\theta}{\sin\theta}}&=\sin^2\theta\\\\\cancel{\cos^2\theta}\times\dfrac{\sin\theta}{\cancel{\cos\theta}}\times\dfrac{\sin\theta}{\cancel{\cos\theta}}&=\sin^2\theta\\\\\sin^2\theta&=\sin^2\theta\end{align}||Both sides of the equation are identical. This proves the identity |\dfrac{\cos^2\theta\,\tan\theta}{\cot\theta}=\sin^2\theta.|
Prove the following identity: |\tan^2\theta-\sin^2\theta=\tan^2\theta\,\sin^2\theta.|
Work with the left-hand side of the equation. Rewrite it in terms of |\sin| and |\cos,| then simplify the resulting expression.
||\begin{align}\tan^2\theta-\sin^2\theta&=\tan^2\theta\,\sin^2\theta\\\\\dfrac{\sin^2\theta}{\cos^2\theta}-\sin^2\theta&=\tan^2\theta\,\sin^2\theta\\\\\dfrac{\sin^2\theta}{\cos^2\theta}-\dfrac{\sin^2\theta\,\cos^2\theta}{\cos^2\theta}&=\tan^2\theta\,\sin^2\theta\\\\\dfrac{\sin^2\theta-\sin^2\theta\,\cos^2\theta}{\cos^2\theta}&=\tan^2\theta\,\sin^2\theta\end{align}||
Factor out |\sin^2\theta| from the numerator.||\dfrac{\sin^2\theta\,(1-\cos^2\theta)}{\cos^2\theta}=\tan^2\theta\,\sin^2\theta||Use the fact that |\cos^2\theta+\sin^2\theta=1| to replace |1-\cos^2\theta| with |\sin^2\theta.| Next, group the factors in a way that allows |\dfrac{\sin^2\theta}{\cos^2\theta}| to be replaced with |\tan^2\theta.|||\begin{align}\dfrac{\sin^2\theta\,(\boldsymbol{\color{#3a9a38}{1-\cos^2\theta}})}{\cos^2\theta}&=\tan^2\theta\,\sin^2\theta\\\\\dfrac{\sin^2\theta\,\boldsymbol{\color{#3a9a38}{\sin^2\theta}}}{\cos^2\theta}&=\tan^2\theta\,\sin^2\theta\\\\\boldsymbol{\color{#3a9a38}{\dfrac{\sin^2\theta}{\cos^2\theta}}}\,\sin^2\theta&=\tan^2\theta\,\sin^2\theta\\\\\boldsymbol{\color{#3a9a38}{\tan^2\theta}}\,\sin^2\theta&=\tan^2\theta\,\sin^2\theta\end{align}||Both sides of the equation are identical. We have successfully proven the identity |\tan^2\theta-\sin^2\theta=\tan^2\theta\,\sin^2\theta.|
Prove the following identity: |\sin\theta\,(1+\tan\theta)+\cos\theta\,(1+\cot\theta)=\csc+\sec\theta.|
Rewrite the entire left-hand side of the equation in terms of |\sin| and |\cos,| then multiply.||\begin{align}\sin\theta\,(1+\tan\theta)+\cos\theta\,(1+\cot\theta)&=\csc\theta+\sec\theta\\\\\sin\theta\left(1+\dfrac{\sin\theta}{\cos\theta}\right)+\cos\theta\left(1+\dfrac{\cos\theta}{\sin\theta}\right)&=\csc\theta+\sec\theta\\\\\sin\theta+\dfrac{\sin^2\theta}{\cos\theta}+\cos\theta+\dfrac{\cos^2\theta}{\sin\theta}&=\csc\theta+\sec\theta\end{align}||Rearrange the terms, put the first 2 over a common denominator and the last 2 over another common denominator.||\begin{align}\sin\theta+\dfrac{\cos^2\theta}{\sin\theta}+\cos\theta+\dfrac{\sin^2\theta}{\cos\theta}&=\csc\theta+\sec\theta\\\\\dfrac{\sin^2\theta}{\sin\theta}+\dfrac{\cos^2\theta}{\sin\theta}+\dfrac{\cos^2\theta}{\cos\theta}+\dfrac{\sin^2\theta}{\cos\theta}&=\csc\theta+\sec\theta\\\\\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta}+\dfrac{\cos^2\theta+\sin^2\theta}{\cos\theta}&=\csc\theta+\sec\theta\end{align}||Use the identity |\cos^2\theta+\sin^2\theta=1| to simplify the numerators.||\begin{align}\dfrac{1}{\sin\theta}+\dfrac{1}{\cos\theta}&=\csc\theta+\sec\theta\\\\\csc\theta+\sec\theta&=\csc\theta+\sec\theta\end{align}||Both sides of the equation are identical. This proves the identity |sin\theta\,(1+\tan\theta)+\cos\theta\,(1+\cot\theta)=\csc+\sec\theta.|
Prove the following identity: |(\csc\,\theta-\cot\theta)^2=\dfrac{1-\cos\theta}{1+\cos\theta}.|
Expand the square on the left-hand side of the equation.||\begin{align}(\csc\theta-\cot\theta)^2&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\\(\csc\theta-\cot\theta)(\csc\theta-\cot\theta)&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\\\csc^2\theta-2\,\csc\theta\,\cot\theta+\cot^2\theta&=\dfrac{1-\cos\theta}{1+\cos\theta}\end{align}||Rewrite it in terms of |\sin| and |\cos.|||\begin{align}\csc^2\theta-2\csc\theta\,\cot\theta+\cot^2\theta&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\\\dfrac{1}{\sin^2\theta}-2\times\dfrac{1}{\sin\theta}\times\dfrac{\cos\theta}{\sin\theta}+\dfrac{\cos^2\theta}{\sin^2\theta}&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\\\dfrac{1}{\sin^2\theta}-\dfrac{2\cos\theta}{\sin^2\theta}+\dfrac{\cos^2\theta}{\sin^2\theta}&=\dfrac{1-\cos\theta}{1+\cos\theta}\end{align}||Since the terms all have a common denominator, group them and rearrange them in descending order of degree.||\dfrac{\cos^2\theta-2\cos\theta+1}{\sin^2\theta}=\dfrac{1-\cos\theta}{1+\cos\theta}||Using the identity |\cos^2\theta+\sin^2\theta=1,| gives the equation |\sin^2\theta=1-\cos^2\theta.| So, replace |\sin^2\theta.|||\dfrac{\cos^2\theta-2\cos\theta+1}{\boldsymbol{\color{#3a9a38}{1-\cos^2\theta}}}=\dfrac{1-\cos\theta}{1+\cos\theta}||Now factor both the numerator and the denominator. The numerator is a perfect square trinomial, while the denominator is a difference of squares.
Numerator||\begin{align}&\cos^2\theta\boldsymbol{\color{#ec0000}{-}}2\cos\theta+1\\=\ &(\boldsymbol{\color{#3a9a38}{\cos\theta}})^2\boldsymbol{\color{#ec0000}{-}}2(\boldsymbol{\color{#3a9a38}{\cos\theta}})(\boldsymbol{\color{#3b87cd}{1}})+(\boldsymbol{\color{#3b87cd}{1}})^2\\=\ &(\boldsymbol{\color{#3a9a38}{\cos\theta}}\boldsymbol{\color{#ec0000}{-}}\boldsymbol{\color{#3b87cd}{1}})(\boldsymbol{\color{#3a9a38}{\cos\theta}}\boldsymbol{\color{#ec0000}{-}}\boldsymbol{\color{#3b87cd}{1}})\end{align}||
Denominator||\begin{align}&1-\cos^2\theta\\=\ &(\boldsymbol{\color{#3b87cd}{1}})^2-(\boldsymbol{\color{#ec0000}{\cos\theta}})^2\\=\ &(\boldsymbol{\color{#3b87cd}{1}}-\boldsymbol{\color{#ec0000}{\cos\theta}})(\boldsymbol{\color{#3b87cd}{1}}+\boldsymbol{\color{#ec0000}{\cos\theta}})\end{align}||
||\dfrac{(\cos\theta-1)(\cos\theta-1)}{(1-\cos\theta)(1+\cos\theta)}=\dfrac{1-\cos\theta}{1+\cos\theta}||To simplify the binomials, factor out |-1| from both pairs of brackets in the numerator.||\begin{align}\dfrac{(-1)(-\cos\theta+1)\,(-1)(-\cos\theta+1)}{(1-\cos\theta)(1+\cos\theta)}&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\dfrac{\overbrace{(-1)(-1)}^{\large{=1}}(1-\cos\theta)(1-\cos\theta)}{(1-\cos\theta)(1+\cos\theta)}&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\\\dfrac{\cancel{(1-\cos\theta)}(1-\cos\theta)}{\cancel{(1\cos\theta)}(1+\cos\theta)}&=\dfrac{1-\cos\theta}{1+\cos\theta}\\\\\dfrac{1-\cos\theta}{1+\cos\theta}&=\dfrac{1-\cos\theta}{1+\cos\theta}\end{align}||Both sides of the equation are identical. This proves the identity |(\csc\theta-\cot\theta)^2=\dfrac{1-\cos\theta}{1+\cos\theta}.|