Content code
m1328
Slug (identifier)
ellipse-conic
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
ellipse
focal axis
ellipse centred at the origin
major axis
minor axis
focus
vertices
standard equation of an ellipse
equation of an ellipse
inequality of an ellipse
general form
Content
Contenu
Corps

The ellipse is one of the conics. It is obtained by the intersection of a cone and a plane.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

An ellipse is the geometric locus of all points whose sum of the distances to 2 fixed points, called foci, is constant.

Second column
Corps

Links
Title (level 2)
Properties of an Ellipse
Title slug (identifier)
ellipse-properties
Contenu
Corps
  • An ellipse has two axes of symmetry. The longest is called the major axis, and the shortest, the minor axis.

  • An ellipse has two foci, |F_1| and |F_2.|

  • An ellipse has four vertices, |V_1,| |V_2,| |V_3,| and |V_4.|

  • An ellipse can be vertical or horizontal.

Columns number
2 columns
Format
50% / 50%
First column
Image
Example of a vertical ellipse with major points identified.
Title
Vertical Ellipse
Second column
Image
Example of a Horizontal Ellipse with Major Points Identified.
Title
Horizontal Ellipse
Title
Les propriétés d'une ellipse
Title (level 2)
Ellipse Centred at the Origin
Title slug (identifier)
ellipse-centred
Contenu
Title (level 3)
An ellipse’s equation centred at the origin
Corps

The equation that defines an ellipse centred at the origin uses parameters |a| and |b.|

Content
Corps

||\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1|| where ||\begin{align} a &:\text{Half the length of the major axis }\\ b &:  \text{Half the length of the minor axis } \end{align}||

Content
Corps
  • If |\color{#ec0000}a < \color{#3b87cd}b,| the ellipse is vertical.

  • If |\color{#ec0000}a > \color{#3b87cd}b,| the ellipse is horizontal.

Title (level 3)
Relations in an Ellipse Centred at the Origin
Title slug (identifier)
relations-in-the-ellipse-centred-at-the-origin
Corps

Here are the graphic representations of the two types of ellipses on which the important points are placed. The coordinates of these points in relation to the parameters of the ellipse are also given.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Vertical ellipse

The sum of the distances between a point on a vertical ellipse and its two foci is |2\color{#3b87cd}b.|

Image
Relations in a vertical ellipse centred at the origin.
Corps

The relationship between parameters |\color{#ec0000}a,| |\color{#3b87cd}b,| and |\color{#3a9a38}c| can be expressed using the Pythagorean Theorem.
||\color{#3a9a38}c^2=\color{#3b87cd}b^2-\color{#ec0000}a^2||

Second column
Corps

Horizontal ellipse

The sum of the distances between a point on a horizontal ellipse and its two foci is |2\color{#ec0000}a.|

Image
Relations in a horizontal ellipse centred at the origin.
Corps

The relationship between parameters |\color{#ec0000}a,|  |\color{#3b87cd}b,| and |\color{#3a9a38}c| can be expressed using the Pythagorean Theorem.
||\color{#3a9a38}c^2=\color{#ec0000}a^2-\color{#3b87cd}b^2||

Title (level 3)
Determine the equation of an ellipse centred at the origin
Corps

Find the value of the parameters |a| and |b| to determine the equation of an ellipse centred at the origin.

Content
Corps

Generally, the procedure below is used.

  1. Determine the value of parameter |\color{#ec0000}a,| which corresponds to half of the ellipse’s horizontal axis, and/or that of parameter |\color{#3B87CD}b,| which corresponds to half of the vertical axis.

  2. If one of the two parameters is missing, find it using one of the following strategies:

    a) If parameter |\color{#3A9A38}c| (the distance between the centre and a focus) is given, use the Pythagorean Theorem to determine the value of the missing parameter. ||\begin{align}\text{Vertical ellipse :}&\ \color{#3a9a38}c^2=\color{#3b87cd}b^2-\color{#ec0000}a^2\\ \text{Horizontal ellipse :}&\ \color{#3a9a38}c^2=\color{#ec0000}a^2-\color{#3b87cd}b^2 \end{align}||

    b) If a point on the ellipse |(x,y)| is provided, substitute these coordinates into the equation and determine the value of the missing parameter.

  3. Write the ellipse’s equation.

Content
Corps

Determine the equation of this ellipse.

Image
Example of an ellipse with the centre, a vertex, and a focus identified.
Solution
Corps
  1. Determine the values of parameter |a| and/or |b|
    The coordinates of one of the vertices is provided: |V(0,3),| which allows us to determine |b.| We obtain: ||\color{#3b87cd}b=\color{#3b87cd}3||

  2. Find the missing parameter
    The coordinates of one of the foci, |F(4,0),| is also provided. It is used to determine |c,| which is the distance between the centre and a focus. This means: ||\color{#3a9a38}c=\color{#3a9a38}4||
    Since the ellipse is horizontal and parameters |b| and |c| are provided, the Pythagorean Theorem is used to find the value of |a.| This gives:
    ||\begin{align}\color{#3a9a38}c^2&=\color{#ec0000}a^2-\color{#3b87cd}b^2\\\color{#3a9a38}4^2&=\color{#ec0000}a^2-\color{#3b87cd}3^2\\16&=\color{#ec0000}a^2-9\\25&=\color{#ec0000}a^2\\\color{#ec0000}5&=\color{#ec0000}a\end{align}||

  3. Write the equation of the ellipse
    Substituting the value of parameters |a| and |b| in the basic equation results in the desired equation. ||\begin{align}\dfrac{x^2}{\color{#ec0000}a^2}+\dfrac{y^2}{\color{#3b87cd}b^2}=1\\ \dfrac{x^2}{\color{#ec0000}{5}^2}+\dfrac{y^2}{\color{#3B87CD}{3}^2}=1\\ \dfrac{x^2}{25}+\dfrac{y^2}{9}=1\end{align}||

Content
Corps

Determine the equation of this ellipse.

Image
Example of an ellipse with an identified vertex and point.
Solution
Corps
  1. Determine the value of parameters |a| and/or |b|
    The coordinates of one of the vertices is given: |V(0,-7)|, on the vertical axis. It is used to determine |b,| which results in:
    ||\color{#3b87cd}b=\color{#3b87cd}7||

  2. Find the missing parameter
    The coordinates of a point, |P(4,4{.}2),| are also given. In the equation, |b| is replaced with |7,| |x| with |4,| and |y| with |4{.}2,| then parameter |a| is isolated.
    ||\begin{align}\dfrac{x^2}{\color{#ec0000}a^2}+\dfrac{y^2}{\color{#3b87cd}b^2}=&\ 1\\ \dfrac{4^2}{\color{#ec0000}{a}^2}+\dfrac{4{.}2^2}{\color{#3B87CD}{7}^2}=&\ 1\\ \dfrac{16}{\color{#ec0000}{a}^2}+\dfrac{17{.}64}{49}=&\ 1 \\\dfrac{16}{\color{#ec0000}{a}^2}+0{.}36=&\ 1 \\ \dfrac{16}{\color{#ec0000}{a}^2}=&\ 0{.}64 \\ 25=&\ \color{#ec0000}{a}^2\\ \color{#ec0000}{5}=&\ \color{#ec0000}a \end{align}||

  3. Write the equation of the ellipse
    Substituting the value of parameters |a| and |b| in the basic equation results in the desired equation. ||\begin{align}\dfrac{x^2}{\color{#ec0000}a^2}+\dfrac{y^2}{\color{#3b87cd}b^2}=1\\ \dfrac{x^2}{\color{#ec0000}{5}^2}+\dfrac{y^2}{\color{#3B87CD}{7}^2}=1\\ \dfrac{x^2}{25}+\dfrac{y^2}{49}=1\end{align}||

Title (level 3)
Sketch an ellipse centred at the origin using its equation
Title slug (identifier)
sketch-an-ellipse-centred-at-the-origin-using-its-equation
Corps

Follow these steps to draw an ellipse centred at the origin using its equation.

Content
Corps
  1. Mark the centre of the ellipse.

  2. Use the value of parameter |\color{#EC0000}a| to mark the two vertices located on the horizontal axis. Here are the coordinates of the vertices: ||\begin{align}V_1&=(\color{#EC0000}{-a},0)\\ V_3&=(\color{#EC0000}a,0)\end{align}||

  3. Use the value of parameter |\color{#3B87CD}b| to mark the two vertices located on the vertical axis. Here are the vertices’ coordinates: ||\begin{align}V_2&=(0,\color{#3B87CD}b)\\ V_4&=(0,\color{#3B87CD}{-b})\end{align}||

  4. Connect the four vertices to draw the ellipse.

Content
Corps

Draw the ellipse represented by the following equation. ||\dfrac{x^{2}}{289}+\dfrac{y^{2}}{196}=1||

Solution
Corps
  1. Mark the centre of the ellipse
    In an ellipse centred at the origin, the centre is point |(0,0).|

  2. Mark the two vertices on the horizontal axis
    We have |\color{#ec0000}{a}=\sqrt{289}=\color{#ec0000}{17}.| Mark the two vertices. ||\begin{align}V_1=&\ (-17,0)\\V_3=&\ (17,0)\end{align}||

  3. Mark the two vertices on the vertical axis
    We have |\color{#3b87cd}b=\sqrt{196}=\color{#3b87cd}{14}.| Mark the two vertices.
    ||\begin{align}V_2=&\ (0,14)\\V_4=&\ (0,-14)\end{align}||

Image
Sketching an ellipse given the equation requires drawing its vertical axis and horizontal axis using the coordinates of its centre and vertices.
Corps
  1. Sketch the ellipse

Image
Sketching an ellipse given the equation requires drawing its vertical axis and horizontal axis using the coordinates of its centre and vertices.
Corps

Title (level 2)
Ellipse Not Centred at the Origin
Title slug (identifier)
ellipse-not-centred
Contenu
Title (level 3)
The equation of an ellipse not centred at the origin
Corps

The equation that defines an uncentered ellipse uses parameters |a,| |b,| |h,| and |k.|

Content
Corps

||\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1|| or ||\begin{align} a &:\text{Half the length of the horizontal axis }\\ b &: \text{Half the length of the vertical axis }\\ (h,k) &: \text{Coordinates of the ellipse’s centre }\end{align}||

Content
Corps
  • If |\color{#ec0000}a < \color{#3b87cd}b,| the ellipse is vertical.

  • If |\color{#ec0000}a > \color{#3b87cd}b,| the ellipse is horizontal.

Title (level 3)
Relations in an ellipse not centred at the origin
Columns number
2 columns
Format
50% / 50%
First column
Corps

Vertical ellipse

The sum of the distances between a point on a vertical ellipse and its two foci is |2\color{#3b87cd}b.|

Image
Relations in the vertical ellipse not centred at the origin.
Corps

The relationship between the parameters  |\color{#ec0000}a,| |\color{#3b87cd}b| and |\color{#3a9a38}c| can be expressed using the Pythagorean Theorem.
||\color{#3a9a38}c^2=\color{#3b87cd}b^2-\color{#ec0000}a^2||

Second column
Corps

Horizontal ellipse

The sum of the distances between a point on a horizontal ellipse and its two foci is |2\color{#ec0000}a.|

Image
Relations in a horizontal ellipse not centred at the origin.
Corps

The relationship between parameters |\color{#ec0000}a,| |\color{#3b87cd}b,| and |\color{#3a9a38}c| can be expressed using the Pythagorean Theorem.
||\color{#3a9a38}c^2=\color{#ec0000}a^2-\color{#3b87cd}b^2||

Title (level 3)
Determine the equation of an ellipse not centred at the origin
Title slug (identifier)
determine-the-equation-of-an-ellipse-not-centred-at-the-origin
Corps

To use a graph to determine the equation of an ellipse not centred at the origin, find the value of parameters |a,| |b,| |h,| and |k.|

Content
Corps

Generally, the process looks like this.

  1. Determine the values of parameters |\color{#FF55C3}h| and |\color{#560FA5}k| from the coordinates of the ellipse’s centre.

  2. Determine the value of parameter |\color{#ec0000}a,| which corresponds to half of the ellipse’s horizontal axis, and/or that of parameter |\color{#3B87CD}b,| which corresponds to half of the vertical axis.

  3. If either parameter |a| or |b| is missing find it using one of the following strategies:

    a) If parameter |\color{#3A9A38}c| (the distance between the centre and a focus) is provided, use the Pythagorean Theorem to determine the missing parameter’s value. ||\begin{align}\text{Vertical ellipse :}&\ \color{#3a9a38}c^2=\color{#3b87cd}b^2-\color{#ec0000}a^2\\ \text{Horizontal ellipse :}&\ \color{#3a9a38}c^2=\color{#ec0000}a^2-\color{#3b87cd}b^2 \end{align}||

    b) If a point on ellipse |(x,y)| is provided, substitute its coordinates into the equation and determine the value of the missing parameter.

  4. Write the ellipse’s equation.

Content
Corps

Determine the equation of this ellipse.

Image
Example of an ellipse not centred at the origin with the centre and its four vertices identified.
Solution
Corps
  1. Determine the value of parameters |h| and |k|
    The ellipse is centred at point |(2,-1),| which gives the following |h| and |k| parameters. ||\begin{align} \color{#ff55c3}{h}&=\color{#ff55c3}{2}\\ \color{#560fa5}{k}&=\color{#560fa5}{-1} \end{align}||

  2. Determine the value of parameters |a| and |b|
    The value of each of the ellipse’s vertices is given. So, it is possible to determine the value of |a| and |b| directly, which corresponds to the half measurement of the horizontal and vertical axes, respectively.
    Since the horizontal axis measures |12| units and the vertical axis measures |8| units, the parameters of |a| and |b| are: ||\begin{align} \color{#ec0000}{a}&=\color{#ec0000}{6}\\ \color{#3b87cd}{b}&=\color{#3b87cd}{4} \end{align}||

  3. Determine the value of missing parameters
    For this example, all the information needed to write the equation is provided.

  4. Write the ellipse’s equation
    Substituting the value of parameters in the basic equation results in the desired equation being found. ||\begin{align}\dfrac{(x-\color{#ff55c3}h)^{2}}{\color{#ec0000}a^2}+\dfrac{(y-\color{#560fa5}k)^{2}}{\color{#3b87cd}b^2}=1\\ \dfrac{(x-\color{#ff55c3}{2})^{2}}{\color{#ec0000}{6}^2}+\dfrac{(y-(\color{#560fa5}{-1}))^{2}}{\color{#3B87CD}{4}^2}=1\\ \dfrac{(x-2)^{2}}{36}+\dfrac{(y+1)^{2}}{16}=1\end{align}||

Content
Corps

Determine the equation of this ellipse, knowing that its horizontal axis measures |16| units.

Image
Example of an ellipse not centred at the origin with the centre with one point identified.
Solution
Corps
  1. Determine the values of parameter |h| and |k|
    The ellipse is centred at point |(-7,12),| which gives the following |h| and |k| parameters. ||\begin{align} \color{#ff55c3}{h}&=\color{#ff55c3}{-7}\\ \color{#560fa5}{k}&=\color{#560fa5}{12} \end{align}||

  2. Determine the values of parameter |a| and |b|
    The length of the horizontal axis is given. Therefore, the value of |a| can be determined directly.
    Since the horizontal axis measures |16| units, the result is: ||\color{#ec0000}{a}=\color{#ec0000}{8}||

  3. Determine the value of missing parameters
    The only missing value is parameter |b.| Find it by substituting point |(-2{.}4,30)| in the equation. ||\begin{align} \dfrac{(x-\color{#ff55c3}h)^{2}}{\color{#ec0000}a^2}+\dfrac{(y-\color{#560fa5}k)^{2}}{\color{#3b87cd}b^2}&=1\\ \dfrac{(-2{.}4-(\color{#ff55c3}{-7}))^{2}}{\color{#ec0000}{8}^2}+\dfrac{(30-\color{#560fa5}{12})^{2}}{\color{#3B87CD}{b}^2}&=1\\ \dfrac{21{.}16}{64}+\dfrac{324}{\color{#3B87CD}b^2}&=1\\ \dfrac{529}{1\ 600}+\dfrac{324}{\color{#3B87CD}b^2}&=1\\ \dfrac{324}{\color{#3B87CD}b^2}&=\dfrac{1\ 071}{1\ 600}\\ 1\ 071\color{#3B87CD}b^2&=518\ 400\\ \color{#3B87CD}{b}^2&\approx484{.}03\\ \color{#3b87cd}{b}&\approx\color{#3b87cd}{22} \end{align}||

  4. Write the equation of the ellipse
    Replacing the value of the parameters in the basic equation results in the desired equation. ||\begin{align} \dfrac{(x-\color{#ff55c3}h)^{2}}{\color{#ec0000}a^2}+\dfrac{(y-\color{#560fa5}k)^{2}}{\color{#3b87cd}b^2}&=1\\ \dfrac{(x-(\color{#ff55c3}{-7}))^{2}}{\color{#EC0000}{8}^2}+\dfrac{(y-\color{#560fa5}{12})^{2}}{\color{#3b87cd}{22}^2}&=1\\ \dfrac{(x+7)^{2}}{64}+\dfrac{(y-12)^{2}}{484}&=1\\ \end{align}||

Title (level 3)
Sketch an ellipse not centred at the origin using its equation
Title slug (identifier)
sketch-an-ellipse-not-centred-at-the-origin-using-its-equation
Corps

Follow these steps to draw an ellipse using its equation.

Content
Corps
  1. Identify parameters |\color{#FF55C3}h| and |\color{#560FA5}k| in the equation and mark the ellipse’s centre.

  2. Use the value of parameter |\color{#EC0000}a| to mark the two vertices located on the horizontal axis. Here are the vertices’ coordinates. ||\begin{align}V_1:(\color{#FF55C3}h\color{#EC0000}{-a},\color{#560FA5}k)\\ V_3:(\color{#FF55C3}h\color{#EC0000}{+a},\color{#560FA5}k)\end{align}||

  3. Use the value of parameter |\color{#3B87CD}b| to place the two vertices on the vertical axis. Here are the vertices’ coordinates. ||\begin{align}V_2:(\color{#FF55C3}h,\color{#560FA5}k\color{#3B87CD}{+b})\\ V_4:(\color{#FF55C3}h,\color{#560FA5}k\color{#3B87CD}{-b})\end{align}||

  4. Connect the four vertices to draw the ellipse.

Content
Corps

Draw the ellipse represented by the following equation. ||\dfrac{(x-5)^{2}}{64}+\frac{(y+4)^{2}}{100}=1||

Solution
Corps
  1. Identify parameters |h| and |k| in the equation and place the centre
    According to the equation, the centre is at the following coordinates: ||(\color{#FF55C3}h,\color{#560fa5}k)=(\color{#FF55C3}5,\color{#560fa5}{-4})||

Image
To draw an ellipse from its equation, start by placing the centre.
Corps
  1. Mark the two vertices on the horizontal axis
    The following is given: |\color{#ec0000}{a}=\sqrt{64}=\color{#ec0000}{8}.| Place the two vertices. ||\begin{align}V_1=&\ (\color{#FF55C3}5\color{#EC0000}{-8},\color{#560FA5}{-4})= (-3,-4)\\ V_3=&\ (\color{#FF55C3}5\color{#EC0000}{+8},\color{#560FA5}{-4})=(13,-4)\end{align}||

  2. Mark the two vertices on the vertical axis
    The following is given: |\color{#3B87CD}{b}=\sqrt{100}=\color{#3B87CD}{10}.| Place the two vertices. ||\begin{align}V_2=&\ (\color{#FF55C3}5,\color{#560FA5}{-4}\color{#3B87CD}{+10})= (5,6)\\ V_4=&\ (\color{#FF55C3}5,\color{#560FA5}{-4}\color{#3B87CD}{-10})=(5,-14)\end{align}||

Image
Drawing an ellipse from the equation requires sketching its vertical axis and horizontal axis using its centre and vertices.
Corps
  1. Draw the ellipse

Image
Drawing an ellipse from the equation requires drawing its vertical axis and horizontal axis from the centre and vertices.
Title (level 2)
Inequality of an Ellipse
Title slug (identifier)
inequality-of-an-ellipse
Contenu
Corps

Apply the following relations to represent a region bounded by an ellipse

Corps

Sector of the Cartesian Plane

Graphical Representation

Corresponding Inequality

The exterior, excluding the curve

Secteur du plan extérieur à l’ellipse, excluant la courbe

||\begin{align}\dfrac{x^2}{a^2}&+\dfrac{y^2}{b^2}>1\\\\
\dfrac{(x-h)^2}{a^2}&+\dfrac{(y-k)^2}{b^2}>1\end{align}||

The interior, excluding the curve

Secteur du plan intérieur à l’ellipse, excluant la courbe

||\begin{align}\dfrac{x^2}{a^2}&+\dfrac{y^2}{b^2}<1\\\\
\dfrac{(x-h)^2}{a^2}&+\dfrac{(y-k)^2}{b^2}<1\end{align}||

The exterior, including the curve

Secteur du plan extérieur à l’ellipse, incluant la courbe

||\begin{align}\dfrac{x^2}{a^2}&+\dfrac{y^2}{b^2}\geq1\\\\
\dfrac{(x-h)^2}{a^2}&+\dfrac{(y-k)^2}{b^2}\geq1\end{align}||

The interior, including the curve

Secteur du plan intérieur à l’ellipse, incluant la courbe

||\begin{align}\dfrac{x^2}{a^2}&+\dfrac{y^2}{b^2}\leq1\\\\
\dfrac{(x-h)^2}{a^2}&+\dfrac{(y-k)^2}{b^2}\leq1\end{align}||

Title (level 2)
Equation of an Ellipse in General Form
Title slug (identifier)
equation-general-form
Contenu
Corps

The general form of the equation of all conics, including the ellipse, for which the horizontal axis is parallel to the x-axis and the vertical axis is parallel to the y-axis is: || Ax^2+ By^2+Cx+Dy+E=0||

It can be helpful to switch from general form to standard form when solving some problems concerning the ellipse.

Contenu
Title
Find the standard form of an ellipse’s equation from its equation in general form
Content
Content
Corps

Determine the ellipse’s focal length (distance between the two foci) represented by the following equation. ||x^2+9y^2 + 8x - 18y - 56 = 0||

  1. Factor the equation by completing the square
    Combine terms that share the same variable. ||\color{#3a9a38}{x^2+8x}+\color{#3B87CD}{9y^2-18y}-56=0||
    Complete the square twice; once for the terms with variable x and again for the terms with variable y.
    For terms with variable |x,| we get the following equation. ||\begin{align} \color{#3a9a38}{x^2+8x}&=(x)^2+2(x)(4)\color{#fa7921}{+(4)^2-(4)^2}\\ \color{#3a9a38}{x^2+8x}&=\color{#3a9a38}{(x+4)^2-16} \end{align}|| As for the terms with variable |y,| we get the following equation: ||\begin{align}\color{#3B87CD}{9y^2-18y}&=9\Big(y^2-2y\Big)\\ \color{#3B87CD}{9y^2-18y}&=9\Big((y)^2-2(y)(1)\color{#fa7921}{+(1)^2-(1)^2}\Big)\\ \color{#3B87CD}{9y^2-18y}&=9\Big((y-1)^2-1\Big)\\ \color{#3B87CD}{9y^2-18y}&=\color{#3B87CD}{9(y-1)^2-9}\\ \end{align}||
    Substitute the expressions found when completing the square for the terms with variables |x| and |y| into the original equation and then simplify the constant terms. ||\begin{align} \color{#3a9a38}{x^2+8x}+\color{#3B87CD}{9y^2-18y}-56&=0\\ \color{#3a9a38}{(x+4)^2-16}+\color{#3B87CD}{9(y-1)^2-9}-56&=0\\ (x+4)^2+9(y-1)^2-81&=0\\ \end{align}||

  2. Manipulate this equation to find the equation in standard form
    Since the standard form of an ellipse is equal to |1| , we have to do some manipulations. ||\begin{align} (x+4)^2+9(y-1)^2-81&=0\\ (x+4)^2+9(y-1)^2&=81\\ \dfrac{(x+4)^2}{81}+\dfrac{9(y-1)^2}{81}&=\dfrac{81}{81} \\ \dfrac{(x+4)^2}{81}+\frac{(y-1)^2}{9}&=1\\ \end{align}||

  3. Find the values of |a| and |b|
    The values of |a| and |b| must be found when searching for the focal length. To achieve this, find the square roots of the two denominators. ||\begin{align} \dfrac{(x+4)^2}{81} + \dfrac{(y-1)^2}{9} &=1\\ \dfrac{(x+4)^2}{\color{#ec0000}9^2} + \dfrac{(y-1)^2}{\color{#3b87cd}3^2} &=1\end{align}||

  4. Calculate the value of |c|
    Since |a > b,| the following equation is used: ||\begin{align}\color{#3a9a38}c^2&=\color{#ec0000}a^2-\color{#3b87cd}b^2\\ \color{#3a9a38}c^2&= \color{#ec0000}9^2-\color{#3b87cd}3^2\\ \color{#3a9a38}c^2&=81-9\\ \color{#3a9a38}c^2&=72\\ \color{#3a9a38}c\ &\approx \color{#3a9a38}{8{.}5}\end{align}||

Therefore, the focal length of this ellipse is |2 \times 8{.}5 = 17.|

Title (level 2)
See also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No