Content code
m1332
Slug (identifier)
points-of-intersection-between-a-line-and-a-conic
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
conic
circle
ellipse
hyperbola
parabola
points of intersection
meeting points
crossing points
intersection of a line and a circle
intersection of a line and an ellipse
intersection of a line and a hyperbola
intersection of a line and a parabola
Content
Contenu
Corps

To find the intersection point(s) between a line and a conic, we solve the system of equations composed of first-degree and second-degree equations.

Surtitle
Règle
Content
Corps
  1. Use the substitution method to obtain an equation with one variable.

  2. Manipulate the equation so it equals |0.|

  3. Solve the equation to find the value(s) of the isolated variable.

  4. Replace the value(s) obtained into one of the original equations to obtain the value(s) of the other variable.

  5. Write the coordinates of the point(s) of intersection.

Content
Corps

Unlike the intersection between a parabola and a conic, there are three possible cases regarding the number of solutions:

  • the line and the conic do not intersect;

  • the line and the conic intersect only at one place, called the point of tangency;

  • the line and the conic intersect at two distinct places.

In the following interactive video, select a conic and drag the cursor to study the possible cases.

Links
Title (level 2)
The Intersection Points Between a Line and a Circle
Title slug (identifier)
the-intersection-points-between-a-line-and-a-circle
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the line |y=2x+5| and the circle |x^2+y^2=10.|

Solution
Corps
  1. Use the substitution method
    We use the substitution method since variable |y| in the equation of the line is already isolated.||\begin{align}
    x^2+\color{#3a9a38}{y}^2&=10\\
    x^2+(\color{#3a9a38}{2x+5})^2&=10
    \end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}
    x^2+(2x+5)^2&=10\\
    x^2+(4x^2+20x+25)&=10\\
    \color{#3B87CD}{5}x^2+\color{#3A9A38}{20}x+\color{#EC0000}{15}&=0
    \end{align}||

  3. Solve the equation
    Using the quadratic formula, we obtain:||\begin{align}
    x&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\
    &=\dfrac{-(\color{#3A9A38}{20})\pm\sqrt{(\color{#3A9A38}{20})^2-4(\color{#3B87CD}{5})(\color{#EC0000}{15})}}{2(\color{#3B87CD}{5})}\\\\
    &=\dfrac{-20\pm\sqrt{100}}{10}\\\\
    x_{\small{A}}&=-3\\
    x_{\small{B}}&=-1
    \end{align}||

  4. Substitute the values obtained in one of the starting equations
    For point |A| en |x_{\small{A}}=-3,| we have:||\begin{align}
    y_{\small{A}}&=2\color{#3A9A38}{x_{\small{A}}}+5\\
    &=2(\color{#3A9A38}{-3})+5\\
    &=-1
    \end{align}||As for the point |B| en |x_{\small{B}}=-1,| we have:||\begin{align}
    y_{\small{B}}&=2\color{#3A9A38}{x_{\small{B}}}+5\\
    &=2(\color{#3A9A38}{-1})+5\\
    &=3
    \end{align}||

  5. Write the coordinates of the points of intersection
    The coordinates of the two points of intersection between the line |y=2x+5| and the circle |x^2+y^2=10| are |A(-3,-1)| and |B(-1,3).|

Image
A straight line intersecting a circle at two distinct points.
Title (level 2)
The Intersection Points Between a Line and an Ellipse
Title slug (identifier)
the-intersection-points-between-a-line-and-an-ellipse
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the line |y =-2x+6| and the ellipse |\dfrac{x^2}{36}+\dfrac{y^2}{49}=1.|

Solution
Corps
  1. Use substitution method
    We use the substitution method since variable |y| in the equation of the line is already isolated.||\begin{align}\dfrac{x^2}{36}+\dfrac{\color{#3a9a38}{y}^2}{49}&=1\\\\ \dfrac{x^2}{36}+\dfrac{(\color{#3a9a38}{-2x+6})^2}{49}&=1\end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}\dfrac{x^2}{36}+\dfrac{(-2x+6)^2}{49}&=1\\\\ \dfrac{49x^2}{1\ 764}+\dfrac{36(-2x+6)^2}{1\ 764}&=1\\\\ \dfrac{49x^2+36(4x^2-24x+36)}{1\ 764}&=1\\\\ 49x^2+144x^2-864x+1\ 296&=1\ 764\\ \color{#3B87CD}{193}x^2\color{#3A9A38}{-864}x\color{#EC0000}{-468}=0\end{align}||

  3. Solve the equation
    Using the quadratic formula, we obtain: ||\begin{align}x&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\ &=\dfrac{-(\color{#3A9A38}{-864})\pm\sqrt{(\color{#3A9A38}{-864})^2-4(\color{#3B87CD}{193})(\color{#EC0000}{-468})}}{2(\color{#3B87CD}{193})}\\\\ &=\dfrac{864\pm\sqrt{1\ 107\ 792}}{386}\\\\ x_{\small{A}}&\approx-0{.}49\\ x_{\small{B}}&\approx4{.}97\end{align}||

  4. Substitute the values obtained in one of the starting equations
    For point |A| en |x_{\small{A}}=-0{.}49,| we have: ||\begin{align}y_{\small{A}}&=-2\color{#3A9A38}{x_{\small{A}}}+6\\ &=-2(\color{#3A9A38}{-0{.}49})+6\\ &=6{.}98\end{align}|| As for the point |B| with |x_{\small{B}}=4{.}97,| we have: ||\begin{align}y_{\small{B}}&=-2\color{#3A9A38}{x_{\small{B}}}+6\\ &=-2(\color{#3A9A38}{4{.}97})+6\\ &=-3{.}94\end{align}||

  5. Write the coordinates of the points of intersection
    The coordinates of the two points of intersection between the line |y=-2x+6| and the ellipse |\dfrac{x^2}{36}+\dfrac{y^2}{49}=1| are |A(-0{.}49;6{.}98)| and |B(4{.}97;-3{.}94).|

Image
A line intersecting an ellipse at two distinct points.
Title (level 2)
The Intersection Points Between a Line and a Hyperbola
Title slug (identifier)
the-intersection-points-between-a-line-and-a-hyperbola
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the line |y=2x-13| and the hyperbola |\dfrac{x^2}{25}-\dfrac{y^2}{100}=1.|

Solution
Corps
  1. Use substitution method
    We use the substitution method since variable |y| in the equation of the line is already isolated.||\begin{align}\dfrac{x^2}{25}-\dfrac{\color{#3a9a38}{y}^2}{100}&=1\\\\ \dfrac{x^2}{25}-\dfrac{(\color{#3a9a38}{2x-13})^2}{100}&=1\end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}\dfrac{x^2}{25}-\dfrac{(2x-13)^2}{100}&=1\\\\ \dfrac{4x^2-(2x-13)^2}{100}&=1\\\\ 4x^2-(4x^2-52x+169)&=100\\ 52x-269&=0\end{align}||

  3. Solve the equation||\begin{align}52x-269&=0\\ 52x&=269\\ x_{\small{A}}&\approx5{.}17\end{align}||

  4. Substitute the value obtained in one of the starting equations
    ||\begin{align}y_{\small{A}}&=2\color{#3A9A38}{x_{\small{A}}}-13\\ &=2(\color{#3A9A38}{5{.}17})-13\\ &=-2{.}66\end{align}||

  5. Write the coordinates of the point of intersection
    The coordinates of the point of intersection between the line |y=2x-13| and the hyperbola |\dfrac{x^2}{25}-\dfrac{y^2}{100}=1| are |A(5{.}17,-2{.}66).|

Image
A straight line intersecting a hyperbola at a single point.
Title (level 2)
The Intersection Points Between a Line and a Parabola
Title slug (identifier)
the-intersection-points-between-a-line-and-a-parabola
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the line |y=4x-7| and the parabola |(x-4)^2=3(y+6).| 

Solution
Corps
  1. Use substitution method
    We use the substitution method since variable |y| in the equation of the line is already isolated. ||\begin{align}(x-4)^2&=3(\color{#3a9a38}{y}+6)\\ (x-4)^2&=3(\color{#3a9a38}{4x-7}+6)\\ (x-4)^2&=3(4x-1)\end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}(x-4)^2&=3(4x-1)\\ x^2-8x+16&=12x-3\\ \color{#3B87CD}{1}x^2\color{#3A9A38}{-20}x+\color{#EC0000}{19}&=0\end{align}||

  3. Solve the equation
    Using the quadratic formula, we obtain: ||\begin{align}x&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\ &=\dfrac{-(\color{#3A9A38}{-20})\pm\sqrt{(\color{#3A9A38}{-20})^2-4(\color{#3B87CD}{1})(\color{#EC0000}{19})}}{2(\color{#3B87CD}{1})}\\\\ &=\dfrac{20\pm\sqrt{324}}{2}\\\\ x_{\small{A}}&=1\\ x_{\small{B}}&=19\end{align}||

  4. Substitute the values obtained in one of the starting equations
    For the point |A| with |x_{\small{A}}=1,| we have: ||\begin{align}y_{\small{A}}&=4\color{#3A9A38}{x_{\small{A}}}-7\\ &=4(\color{#3A9A38}{1})-7\\ &=-3\end{align}|| As for the point |B| with |x_{\small{B}}=19,| we have: ||\begin{align}y_{\small{B}}&=4\color{#3A9A38}{x_{\small{B}}}-7\\ &=4(\color{#3A9A38}{19})-7\\ &=69\end{align}||

  5. Write the coordinates of the intersection points
    The coordinates of the two points of intersection between the line |y=4x-7| and the parabola |(x-4)^2=3(y+6)| are |A(1,-3)| and |B(19,69).|

Image
A straight line intersecting a parabola at two distinct points.
Title (level 2)
À voir aussi
Title slug (identifier)
a-voir-aussi
Contenu
Links
Remove audio playback
No