Content code
m1333
Slug (identifier)
points-of-intersection-between-a-parabola-and-a-conic
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
conic
circle
ellipse
hyperbola
parabola
points of intersection
meeting points
crossing points
intersection between a parabola and a circle
intersection between a parabola and an ellipse
intersection between a parabola and a hyperbola
intersection between two parabolas
Content
Contenu
Corps

To find the intersection point(s) between a parabola and a conic, we solve one or more system(s) of second-degree equations.

Content
Corps
  1. Use the appropriate method (comparison, substitution, or elimination) to obtain an equation with one variable.

  2. Manipulate the equation so that it equals |0.|

  3. Solve the equation to find the value(s) of the isolated variable.

  4. Replace the value(s) obtained in one of the original equations to obtain the value(s) of the other variable.

  5. Write the coordinates of the point(s) of intersection.

Content
Corps

Unlike the intersection between a line and a conic, there are five possible cases regarding the number of solutions:

  • the parabola and the conic do not intersect;

  • the parabola and the conic intersect only at one place, called the point of tangency; or

  • the parabola and the conic intersect in two, three, or four distinct places.

In the following interactive video, select a conic section and drag the cursor to study possible cases.

Width
600
Height
600
Vertical scrollbar
Disabled
Horizontal scrollbar
Disabled
Links
Title (level 2)
The Intersection Points Between a Parabola and a Circle
Title slug (identifier)
parabola-circle
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the parabola |y^2=-16x| and the circle |x^2+y^2=36.|

Solution
Corps
  1. Use the appropriate method to obtain a one-variable equation
    Use the substitution method since |y^2| in the parabola’s equation is already isolated.||\begin{align}x^2+\color{#3a9a38}{y^2}&=36\\x^2+\color{#3a9a38}{-16x}&=36\end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}x^2-16x&=36\\ \color{#3B87CD}{1}x^2\color{#3A9A38}{-16}x\color{#EC0000}{-36}&=0\end{align}||

  3. Solve the equation
    Use the quadratic formula to obtain:||\begin{align} x&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\ &=\dfrac{-(\color{#3A9A38}{-16})\pm\sqrt{(\color{#3A9A38}{-16})^2-4(\color{#3B87CD}{1})(\color{#EC0000}{-36})}}{2(\color{#3B87CD}{1})}\\\\ &=\dfrac{16\pm\sqrt{400}}{2}\\\\ x&\in\{-2,18\} \end{align}||The equation shows that the parabola is horizontal and open to the left. Thus, reject |x=18,| since the function does not exist at this value.||x=-2||

  4. Substitute the values obtained in one of the starting equations
    ||\begin{align} y^2&=-16\color{#3A9A38}{x}\\ &=-16(\color{#3A9A38}{-2})\\ &=32\\ y&=\pm\sqrt{32}\\\\ y_{\small{A}}&\approx5{.}66\\ y_{\small{B}}&\approx-5{.}66 \end{align}||

  5. Write the coordinates of the points of intersection
    The coordinates of the two points of intersection between the parabola |y^2=-16x| and the circle |x^2+y^2=36| are |A(-2,5{.}66)| and |B(-2,-5{.}66).|

Image
A parabola intersecting a circle at two distinct points.
Title (level 2)
The Intersection Points Between a Parabola and an Ellipse
Title slug (identifier)
parabola-ellipse
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the parabola |x^2=12(y+3)| and the ellipse |\dfrac{x^2}{25}+\dfrac{y^2}{9}=1.|

Solution
Corps
  1. Use the appropriate method to obtain a one-variable equation
    Use the substitution method, since |x^2| in the parabola’s equation is already isolated.||\begin{align} \dfrac{\color{#3a9a38}{x^2}}{25}+\dfrac{y^2}{9}&=1\\\\ \dfrac{\color{#3a9a38}{12(y+3)}}{25}+\dfrac{y^2}{9}&=1\end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}\dfrac{12y+36}{25}+\dfrac{y^2}{9}&=1\\\\ \dfrac{9(12y+36)}{225}+\dfrac{25y^2}{225}&=1\\\\ \dfrac{108y+324+25y^2}{225}&=1\\\\ 25y^2+108y+324&=225\\ \color{#3B87CD}{25}y^2+\color{#3A9A38}{108}y+\color{#EC0000}{99}&=0\end{align}||

  3. Solve the equation
    Use the quadratic formula to obtain: ||\begin{align} y&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\ &=\dfrac{-(\color{#3A9A38}{108})\pm\sqrt{(\color{#3A9A38}{108})^2-4(\color{#3B87CD}{25})(\color{#EC0000}{99})}}{2(\color{#3B87CD}{25})}\\\\ &=\dfrac{-108\pm\sqrt{1\ 764}}{50}\\\\ y&\in\{-3,-1{.}32\} \end{align}||

  4. Substitute the values obtained in one of the starting equations
    For |y=-3|: ||\begin{align} x^2&=12(\color{#3a9a38}{y}+3)\\ &=12(\color{#3a9a38}{-3}+3)\\ &=0\\\\ x_{\small{A}}&=0
    \end{align}||For |y=-1{.}32|:||\begin{align} x^2&=12(\color{#3a9a38}{y}+3)\\ &=12(\color{#3a9a38}{-1{.}32}+3)\\ &=20{.}16\\ x&=\pm\sqrt{20{.}16}\\\\ x_{\small{B}}&\approx-4{.}49\\ x_{\small{C}}&\approx4{.}49 \end{align}||

  5. Write the coordinates of the points of intersection
    The coordinates of the three points of intersection between the parabola |x^2=12(y+3)| and the ellipse |\dfrac{x^2}{25}+\dfrac{y^2}{9}=1| are |A(0,-3),| |B(-4{.}49,-1{.}32),| and |C(4{.}49,-1{.}32).|

Image
A parabola intersecting an ellipse at three distinct points.
Title (level 2)
The Intersection Points Between a Parabola and a Hyperbola
Title slug (identifier)
parabola-hyperbola
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the parabola |x^2=-4(y-2{.}75)| and hyperbola |\dfrac{x^2}{4}-\dfrac{y^2}{9}=1.|

Solution
Corps
  1. Use the appropriate method to obtain a one-variable equation
    Use the substitution method, since |x^2| in the equation of the parabola is already isolated.||\begin{align} \dfrac{\color{#3a9a38}{x^2}}{4}-\dfrac{y^2}{9}&=1\\\\ \dfrac{\color{#3a9a38}{-4(y-2{.}75)}}{4}-\dfrac{y^2}{9}&=1\end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}\dfrac{-4y+11}{4}-\dfrac{y^2}{9}&=1\\\\ \dfrac{9(-4y+11)}{36}-\dfrac{4y^2}{36}&=1\\\\ \dfrac{-36y+99-4y^2}{36}&=1\\\\ -36y+99-4y^2&=36\\ \color{#3B87CD}{4}y^2+\color{#3A9A38}{36}y\color{#EC0000}{-63}&=0\end{align}||

  3. Solve the equation
    Use the quadratic formula to obtain: ||\begin{align} y&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\ &=\dfrac{-(\color{#3A9A38}{36})\pm\sqrt{(\color{#3A9A38}{36})^2-4(\color{#3B87CD}{4})(\color{#EC0000}{-63})}}{2(\color{#3B87CD}{4})}\\\\ &=\dfrac{-36\pm\sqrt{2\ 304}}{8}\\\\ y&\in\{-10{.}5,1{.}5\} \end{align}||

  4. Substitute the values obtained in one of the starting equations
    For |y=-10{.}5|:||\begin{align} x^2&=-4(\color{#3a9a38}{y}-2{.}75)\\ &=-4(\color{#3a9a38}{-10{.}5}-2{.}75)\\ &=53\\ x&=\pm\sqrt{53}\\\\ x_{\small{A}}&\approx-7{.}28\\ x_{\small{B}}&\approx7{.}28 \end{align}||For |y=1{.}5|:||\begin{align} x^2&=-4(\color{#3a9a38}{y}-2{.}75)\\ &=-4(\color{#3a9a38}{1{.}5}-2{.}75)\\ &=5\\ x&=\pm\sqrt{5}\\\\ x_{\small{C}}&\approx-2{.}24\\ x_{\small{D}}&\approx2{.}24 \end{align}||

  5. Write the coordinates of the points of intersection
    The coordinates of the four points of intersection between the parabola |x^2=-4(y-2{.}75)| and the hyperbola |\dfrac{x^2}{4}-\dfrac{y^2}{9}=1| are |A(-7{.}28,-10{.}5),| |B(7{.}28,-10{.}5),| |C(-2{.}24,1{.}5),| and |D(2{.}24,1{.}5).|

Image
A parabola intersecting a hyperbola at four distinct points.
Title (level 2)
The Intersection Points Between Two Parabolas
Title slug (identifier)
two-parabolas
Contenu
Content
Corps

Determine the coordinates of the point(s) of intersection between the parabolas |(y+4)^2=8(x-2)| and |(y-1)^2=-16(x-10).|

Solution
Corps
  1. Use the appropriate method to obtain a one-variable equation
    In general, the methods of comparison or substitution are the most efficient for obtaining a one-variable equation. However, we notice that |8| is a factor of |-16.| Therefore, instead of isolating a variable, eliminate the terms in |x| using the elimination method by multiplying the equation |(y+4)^2=8(x-2)| by |-2|.

    Expand the two equations:||\begin{align} (y+4)^2&=8(x-2)\\ y^2+8y+16&=8x-16\\ \color{#EC0000}{-2}(y^2+8y+16)&=\color{#EC0000}{-2}(8x-16)\\ -2y^2-16y-32&=\color{#3B87CD}{-16}x+32\\\\ (y-1)^2&=-16(x-10)\\ y^2-2y+1&=\color{#3B87CD}{-16}x+160 \end{align}||Subtracting the two equations gives:||\begin{align} -2y^2-16y-32&=-16x+\ \ 32\\ ^{\huge{-}}\quad\quad (y^2-\ \ 2y+\ \ 1&=-16x+160)\\ \hline -3y^2-14y-33&= \ \ \ \ \ \color{#EC0000}{0x}-128 \end{align}||

  2. Manipulate the equation so that it equals |0|
    ||\begin{align}-3y^2-14y-33&=-128\\ \color{#3B87CD}{3}y^2+\color{#3A9A38}{14}y\color{#EC0000}{-95}&=0\end{align}||

  3. Solve the equation
    Use the quadratic formula to obtain: ||\begin{align} y&=\dfrac{-\color{#3A9A38}{b}\pm\sqrt{\color{#3A9A38}{b}^2-4\color{#3B87CD}{a}\color{#EC0000}{c}}}{2\color{#3B87CD}{a}}\\\\ &=\dfrac{-(\color{#3A9A38}{14})\pm\sqrt{(\color{#3A9A38}{14})^2-4(\color{#3B87CD}{3})(\color{#EC0000}{-95})}}{2(\color{#3B87CD}{3})}\\\\ &=\dfrac{-14\pm\sqrt{1\ 336}}{6}\\\\ y&\in\{-8{.}43,3{.}76\} \end{align}||

  4. Substitute the values obtained in one of the starting equations
    Start by isolating |x| in one of the equations.||\begin{align}(y+4)^2&=8(x-2)\\ \dfrac{(y+4)^2}{8}&=x-2\\ \dfrac{(y+4)^2}{8}+2&=x\end{align}||For |y=-8{.}43|:||\begin{align}x_{\small{A}}&=\dfrac{(\color{#3A9A38}{y}+4)^2}{8}+2\\\\ &=\dfrac{(\color{#3A9A38}{-8{.}43}+4)^2}{8}+2\\\\ &\approx4{.}45\end{align}||For |y=3{.}76|:||\begin{align}
    x_{\small{B}}&=\dfrac{(\color{#3A9A38}{y}+4)^2}{8}+2\\\\ &=\dfrac{(\color{#3A9A38}{3{.}76}+4)^2}{8}+2\\\\ &\approx9{.}53\end{align}||

  5. Write the coordinates of the points of intersection
    The coordinates of the two points of intersection between parabolas |(y+4)^2=8(x-2)| and |(y-1)^2=-16(x-10)| are |A(4{.}45,-8{.}43)| and |B(9{.}53,3{.}76).|

Image
A parabola intersecting another parabola at two distinct points.
Title (level 2)
See also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No