Content code
m1253
Slug (identifier)
finding-the-rule-of-a-rational-function
Parent content
Grades
Secondary V
Topic
Mathematics
Tags
asymptotes
parameters
rational function
rational function equation
rational function rule
standard form of the rational function
standard form
Content
Contenu
Content
Corps

To find the rule of a rational function, the simplified standard form should be used, i.e., |f(x)=\dfrac{a}{x-h}+k.|

Contenu
Title
Proof of the Simplified Form
Content
Corps

The rational function rule can be transformed in the following way, as it can be expressed with only 3 parameters.

||\begin{align} f(x) &= \dfrac{\color{#ec0000}a}{\color{#efc807}b(x - h)} + k \\ f(x) &= \dfrac{\frac{\color{#ec0000}a}{\color{#efc807}b}}{x - h} + k \\ f(x) &= \dfrac{\color{#fa7921}{\text{a}}}{x - h} + k\qquad\text{where}\ \color{#fa7921}{\text{a}}=\dfrac{\color{#ec0000}a}{\color{#efc807}b}\end{align}||

In the last form, |\text{a}| is a combination of parameters |a| and |b.| The last form must be used to find the rule of a rational function, because it is only necessary to find the values of 3 parameters, and not 4.

Content
Corps

Find the rule of a rational function with the following 4 steps.

  1. Determine the value of |h| using the vertical asymptote.

  2. Determine the value of |k| using the horizontal asymptote.

  3. Apply the values |h| and |k| and the coordinates of a point |(x,y)| to the rule.

  4. Isolate |a.|

Content
Corps

Determine the rule of the following rational function.

Image
Graph of a rational function including the asymptotes.
Corps
  1. Determine the value of |h| using the vertical asymptote
    The vertical asymptote’s rule is |\color{#333fb1}{x=-10},| so |\color{#333fb1}{h=-10}.|

  2. Determine the value of |k| using the horizontal asymptote
    The horizontal asymptote’s rule is |\color{#3a9a38}{y=40},| so |\color{#3a9a38}{k=40}.|

  3. Apply the values |h| and |k| and the coordinates of a point |(x,y)| to the rule
    ||\begin{align} f(x) &= \dfrac{a}{x - \color{#333fb1}h} + \color{#3a9a38}k \\ \color{#560fa5}{f(x)} &= \dfrac{a}{\color{#560fa5}x - \color{#333fb1}{-10}} + \color{#3a9a38}{40} \\ \color{#560fa5}{30} &= \dfrac{a}{\color{#560fa5}{15}+10} + 40 \end{align}||

  4. Isolate |a|
    ||\begin{align} 30 &= \dfrac{a}{25}+40 \\ 30 \color{#ec0000}{-40} &= \dfrac{a}{25}+40 \color{#ec0000}{-40} \\ -10 &=\dfrac{a}{25} \\ -10 \color{#ec0000}{\times 25} &=\dfrac{a}{25} \color{#ec0000}{\times 25} \\ -250 &= a \end{align}||

Answer: The rule of the rational function represented in the graph is |f(x)=\dfrac{-250}{x+10}+40.|

Content
Corps

When the equations of the asymptotes are unknown, but the point of intersection of the 2 asymptotes is given, the first 2 steps can be done at the same time. In fact, the coordinates of the intersection point of the asymptotes are |(h,k).|

Content
Corps

Find the rule of the rational function with the following characteristics:

  • the intersection point of the asymptotes is |(5,-3);|

  • the curve passes through the point |(7,-2).|

Since the intersection point of the asymptotes is given, steps 1 and 2 can be done at the same time.

  1. Determine the value of |h| using the vertical asymptote

  2. Determine the value of |k| using the horizontal asymptote

    The intersection point of the asymptotes gives the rule for each asymptote.
    ||(\color{#333fb1}5,\color{#3a9a38}{-3})\ \Leftrightarrow\ \begin{cases} \color{#333fb1}{x = 5} \\ \color{#3a9a38}{y = -3} \end{cases}||
    The equations of the asymptotes correspond to the equation’s parameter values |h| and |k|, so |\color{#333fb1}{h=5}| and |\color{#3a9a38}{k=-3}.|

  3. Apply the values |h| and |k| and the coordinates of a point |(x,y)| to the rule
    ||\begin{align} f(x) &= \dfrac{a}{x - \color{#333fb1}h} + \color{#3a9a38}k \\ \color{#560fa5}{f(x)} &= \dfrac{a}{\color{#560fa5}x - \color{#333fb1}5} + \color{#3a9a38}{-3} \\ \color{#560fa5}{-2} &= \dfrac{a}{\color{#560fa5}{7}-5}-3\end{align}||

  4. Isolate |a|
    ||\begin{align} -2 &= \dfrac{a}{2}-3 \\ 1 &=\dfrac{a}{2} \\ 2 &= a \end{align}||

Answer: The rule for the function is |f(x)=\dfrac{2}{x-5}-3.|

Content
Corps

You may be asked to find the rule of a rational function in the general form instead of the standard form. To do so, start by finding the rule in the standard form. After it is done, make the transition from the standard form to the general form.

Title (level 2)
Video
Title slug (identifier)
video
Title (level 2)
See also
Title slug (identifier)
see-also
Contenu
Corps

Pour valider ta compréhension à propos de la fonction rationnelle et de plusieurs autres fonctions de façon interactive, consulte la MiniRécup suivante :

MiniRécup
Links
Remove audio playback
No
Printable tool
Off