Content code
m1410
Slug (identifier)
solving-a-cosine-equation-or-inequality
Grades
Secondary V
Topic
Mathematics
Tags
unit circle
trigonometric circle
cosine function
solving trigonometric equations
solving trigonometric inequalities
arccos
arccosine
Content
Contenu
Content
Corps

A cosine equation or inequality contains a cosine ratio, where the unknown |(x)| is found in the argument.

Corps

Since the cosine function is periodic, this type of equation may have no solution, one solution, several solutions or an infinite number of solutions.

Also, we need to use the angles in radians.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

In the unit circle, the cosine of an angle corresponds to the x-coordinate of the point on the circle. When solving a cosine equation, we look for angles that have a certain x-coordinate. To do so, we can use the main points of the unit circle or the inverse function |\boldsymbol{\arccos}.|

When we use the unit circle, we generally choose angles located between |0| and |2\pi.|

When using the reciprocal function |\arccos,| the result obtained is always an angle in the 1st quadrant or the 2nd quadrant of the unit circle. In other words, the angle is between |0| and |\pi.|

However, there are always 2 different trigonometric angles with the same x-coordinate. This is why, from the angle obtained |\boldsymbol{\color{#fa7921}{(\theta)}},| we find the 2nd angle by calculating |\boldsymbol{\color{#51b6c2}{-\theta}}.|

Second column
Image
Any two angles with the same x-coordinate on the unit circle.
Content
Corps

The inverse function |\arccos| is sometimes denoted |\cos^{-1},| especially on calculators.

Links
Title (level 2)
Solving a Cosine Equation
Title slug (identifier)
solving-cosine-equation
Contenu
Corps

The procedure for solving a cosine equation is as follows:

Content
Corps
  1. Isolate the cosine ratio.

  2. Find the trigonometric angles.
    - If the cosine ratio is equal to the x-coordinate of one of the main points, use the unit circle.
    - If not, use the inverse function |\boldsymbol{\arccos}.|

  3. Solve the equations obtained with the trigonometric angles.

  4. Calculate the period of the cosine function.

  5. Give the solutions of the equation.

Links
Title (level 3)
Solving a Cosine Equation Using the Unit Circle
Title slug (identifier)
equation-unit-circle
Corps

Here's an example using the main points of the unit circle to solve the equation.

Content
Corps

Solve the following equation:||2\cos(5x)+\sqrt{3}=0||

Columns number
2 columns
Format
50% / 50%
First column
Corps

Solve the following equation:||2\cos(5x)+\sqrt{3}=0||

Second column
Solution
Corps
  1. Isolate the cosine ratio.
    ||\begin{align}2\cos(5x)+\sqrt{3}&=0\\2\cos(5x)&=-\sqrt{3}\\[3pt]\cos(5x)&=-\dfrac{\sqrt{3}}{2}\end{align}||

  2. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since |\boldsymbol{\color{#333fb1}{-\dfrac{\sqrt{3}}{2}}}| is an x-coordinate of one of the main points, we can determine the angles sought directly from the unit circle.

We find that the angles with a x-coordinate of |-\dfrac{\sqrt{3}}{2}| are |\boldsymbol{\color{#fa7921}{\dfrac{5\pi}{6}}}| and |\boldsymbol{\color{#51b6c2}{\dfrac{7\pi}{6}}}.|

Second column
Image
The unit circle with the 2 main points.
Corps
  1. Solve the equations.

We get the following 2 equations that are created using the angles found in the last step.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\cos(5x)&=-\dfrac{\sqrt{3}}{2}\\&\Downarrow\\5x&=\dfrac{5\pi}{6}\\[3pt]\boldsymbol{\color{#fa7921}{x_1}}&=\boldsymbol{\color{#fa7921}{\dfrac{\pi}{6}}}\end{align}||

Second column
Corps

||\begin{align}\cos(5x)&=-\dfrac{\sqrt{3}}{2}\\&\Downarrow\\5x&=\dfrac{7\pi}{6}\\[3pt]\boldsymbol{\color{#51b6c2}{x_2}}&=\boldsymbol{\color{#51b6c2}{\dfrac{7\pi}{30}}}\end{align}||

Corps
  1. Calculate the period of the cosine function.

The cosine function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{2\pi}{\vert b\vert}\\[3pt]&=\dfrac{2\pi}{\vert5\vert}\\[3pt]&=\dfrac{2\pi}{5}\end{align}||

  1. Give the solutions of the equation.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The solutions of the equation |2\cos(5x)+\sqrt{3}=0| are as follows:

||x=\begin{cases}\dfrac{\pi}{6}+\dfrac{2\pi}{5}n\\[3pt]\dfrac{7\pi}{30}+\dfrac{2\pi}{5}n\end{cases}||where||n\in\mathbb{Z}||

Second column
Image
Graph showing the solutions of the equation.
Title (level 3)
Solving a Cosine Equation Using |\boldsymbol{\arccos}|
Title slug (identifier)
equation-arccos
Corps

Here's an example that uses the inverse function arccosine to solve the equation.

Content
Corps

Solve the following equation for the interval |[-\pi,\pi].|||\dfrac{1}{2}\cos\left(\dfrac{3(x+1)}{2}\right)+\dfrac{9}{10}=1||

Solution
Corps
  1. Isolate the cosine ratio.
    ||\begin{align}\dfrac{1}{2}\cos\left(\dfrac{3(x+1)}{2}\right)+\dfrac{9}{10}&=1\\[3pt]\dfrac{1}{2}\cos\left(\dfrac{3(x+1)}{2}\right)&=\dfrac{1}{10}\\[3pt]\cos\left(\dfrac{3(x+1)}{2}\right)&=\dfrac{1}{5}\end{align}||

  2. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since |\boldsymbol{\color{#333fb1}{\dfrac{1}{5}}}| is not an x-coordinate of one of the main points, we determine the 1st angle using |\arccos.|||\begin{align}\cos\left(\dfrac{3(x+1)}{2}\right)&=\dfrac{1}{5}\\&\Downarrow\\\boldsymbol{\color{#fa7921}{\dfrac{3(x+1)}{2}}}&=\arccos\left(\dfrac{1}{5}\right)\\[3pt]&\approx\boldsymbol{\color{#fa7921}{1.37}}\end{align}||The 2nd angle is found as follows:||\boldsymbol{\color{#51b6c2}{\dfrac{3(x+1)}{2}}}\approx\boldsymbol{\color{#51b6c2}{-1.37}}||

Second column
Image
The unit circle with both points.
Corps
  1. Solve the equations.

We find the following 2 equations that are formed from the angles found in the last step, and solve them.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\dfrac{3(x+1)}{2}&\approx1.37\\[3pt]x+1&\approx0.91\\\boldsymbol{\color{#fa7921}{x_1}}&\approx\boldsymbol{\color{#fa7921}{-0.09}}\end{align}||

Second column
Corps

||\begin{align}\dfrac{3(x+1)}{2}&\approx-1.37\\[3pt]x+1&\approx-0.91\\\boldsymbol{\color{#51b6c2}{x_2}}&\approx\boldsymbol{\color{#51b6c2}{-1.91}}\end{align}||

Corps
  1. Calculate the period of the cosine function.

The cosine function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{2\pi}{\vert b\vert}\\[3pt]&=\dfrac{2\pi}{\left\vert\frac{3}{2}\right\vert}\\[3pt]&=\dfrac{4\pi}{3}\end{align}||

  1. Give the solutions of the equation.

Since we're looking for solutions within the interval |[-\pi,\pi],| there are a finite number of solutions. The other solutions are calculated by adding or subtracting the period |\left(\dfrac{4\pi}{3}\right)| to the 2 answers found in Step 3, without exceeding the interval.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Solutions from |\boldsymbol{x_1}|

We keep |-0.09,| since this value is found inside the interval |[-\pi,\pi].|||\begin{align}x&\approx-0.09+\dfrac{4\pi}{3}\\[3pt]&\approx4.1\end{align}||We reject |4.1,| since this value is larger than |\pi.|||\begin{align}x&\approx-0.09-\dfrac{4\pi}{3}\\[3pt]&\approx-4.28\end{align}||We reject |-4.28,| since this value is less than |-\pi.|

Second column
Corps

Solutions from |\boldsymbol{x_2}|

We keep |-1.91,| since this value is found inside the interval |[-\pi,\pi].|||\begin{align}x&\approx-1.91+\dfrac{4\pi}{3}\\[3pt]&\approx2.28\end{align}||We keep |2.28,| since this value is found inside the interval |[-\pi,\pi].|||\begin{align}x&\approx2.28+\dfrac{4\pi}{3}\\[3pt]&\approx6.47\end{align}||We reject |6.47,| since this value is larger than |\pi.|||\begin{align}x&\approx-1.91-\dfrac{4\pi}{3}\\[3pt]&\approx-6.1\end{align}||We reject |-6.1,| since this value is less than |-\pi.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

The solutions of the equation |\dfrac{1}{2}\cos\left(\dfrac{3(x+1)}{2}\right)+\dfrac{9}{10}=1| for the interval |[-\pi,\pi]| are the following:||x\in\{-1.91,\ -0.09,\ 2.28\}||

Second column
Image
Graph showing the solutions of the equation.
Title (level 3)
Exercise - Solving a Cosine Equation
Title slug (identifier)
exercise-equation
Largeur de l'exercice
720
Hauteur de l'exercice
720
Title (level 3)
Solving a 2nd Degree Cosine Equation
Title slug (identifier)
equation-2nd-degree
Corps

Here's an example of solving a 2nd degree cosine equation.

Content
Corps

Solve the following equation:||2\cos^2\left(\dfrac{x}{4}\right)-3\cos\left(\dfrac{x}{4}\right)+1=0||

Solution
Corps

A cosine equation of this type can be solved using the same strategies we use to solve a 2nd degree polynomial equation. In other words, you can use factoring or the quadratic formula.

To do so, we need to change the variable by replacing |\cos\left(\dfrac{x}{4}\right)| with |z.| This way, we can temporarily set aside the cosine ratios and concentrate on solving the 2nd degree polynomial.

The result is the following equation:||2\cos^2\left(\dfrac{x}{4}\right)-3\cos\left(\dfrac{x}{4}\right)+1=0\\\Updownarrow\\2z^2-3z+1=0||Using the quadratic formula, we obtain the following solutions for |z|:||\begin{align}z_{1,2}&=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\[3pt]&=\dfrac{-(-3)\pm\sqrt{(-3)^2-4(2)(1)}}{2(2)}\\[3pt]&=\dfrac{3\pm\sqrt{1}}{4}\\\\z_1&=1\quad\text{and}\quad z_2=\dfrac{1}{2}\end{align}||The solutions of the equation |2z^2-3z+1=0| are therefore |z_1=1| and |z_2=\dfrac{1}{2}.| Since we changed variables, we can substitute |z| with |\cos\left(\dfrac{x}{4}\right).| We get the following 2 equations:

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\cos\left(\dfrac{x}{4}\right)=1||

Second column
Corps

||\cos\left(\dfrac{x}{4}\right)=\dfrac{1}{2}||

Corps

We can now proceed as we would for a 1st degree cosine equation.

  1. Isolate the cosine ratio.

The cosine ratio is already isolated in both equations.

  1. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since |\boldsymbol{\color{#333fb1}{1}}| and |\boldsymbol{\color{#333fb1}{\dfrac{1}{2}}}| are x-coordinates of certain main points, we can determine the angles sought directly from the unit circle.

We find that the angle with an x-coordinate of |1| is |\boldsymbol{\color{#ff55c3}{0}},| and that the angles with an x-coordinate of |\dfrac{1}{2}| are |\boldsymbol{\color{#fa7921}{\dfrac{\pi}{3}}}| and |\boldsymbol{\color{#51b6c2}{\dfrac{5\pi}{3}}}.|

Second column
Image
The unit circle with the 3 main points.
Corps
  1. Solve the equations.

We get the following 3 equations that are created using the angles found in the last step.

Columns number
3 columns
Format
33% / 33% / 33%
First column
Corps

||\begin{align}\cos\left(\dfrac{x}{4}\right)&=1\\&\Downarrow\\\dfrac{x}{4}&=0\\[3pt]\boldsymbol{\color{#ff55c3}{x_1}}&=\boldsymbol{\color{#ff55c3}{0}}\end{align}||

Second column
Corps

||\begin{align}\cos\left(\dfrac{x}{4}\right)&=\dfrac{1}{2}\\&\Downarrow\\\dfrac{x}{4}&=\dfrac{\pi}{3}\\[3pt]\boldsymbol{\color{#fa7921}{x_2}}&=\boldsymbol{\color{#fa7921}{\dfrac{4\pi}{3}}}\end{align}||

Third column
Corps

||\begin{align}\cos\left(\dfrac{x}{4}\right)&=\dfrac{1}{2}\\&\Downarrow\\\dfrac{x}{4}&=\dfrac{5\pi}{3}\\[3pt]\boldsymbol{\color{#51b6c2}{x_3}}&=\boldsymbol{\color{#51b6c2}{\dfrac{20\pi}{3}}}\end{align}||

Corps
  1. Calculate the period of the cosine function.

The cosine function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{2\pi}{\vert b\vert}\\[3pt]&=\dfrac{2\pi}{\left\vert\frac{1}{4}\right\vert}\\[3pt]&=8\pi\end{align}||

  1. Give the solutions of the equation.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The solutions of the equation |2\cos^2\left(\dfrac{x}{4}\right)-3\cos\left(\dfrac{x}{4}\right)+1=0| are as follows:

||x\in\left\{0+8\pi n,\ \dfrac{4\pi}{3}+8\pi n,\ \dfrac{20\pi}{3}+8\pi n\right\}||where||n\in\mathbb{Z}||

Second column
Corps

We can use a technological tool to plot the solutions on the graph of the 2nd degree cosine function. Sketching this sort of graph is not part of the high school curriculum.

Image
Graph showing the solutions of the equation.
Title (level 2)
Solving a Cosine Inequality
Title slug (identifier)
solving-cosine-inequality
Contenu
Corps

The procedure for solving a cosine inequality is as follows:

Content
Corps
  1. Change the inequality symbol to an equal symbol.

  2. Isolate the cosine ratio.

  3. Determine the trigonometric angles.
    - If the cosine ratio is equal to an x-coordinate of one of the main points, use the unit circle.
    - If not, use the inverse function |\boldsymbol{\arccos}.|

  4. Solve the equations obtained with the trigonometric angles.

  5. Calculate the period of the cosine function.

  6. Give the solution set of the inequality.

Links
Title (level 3)
Solving a Cosine Inequality Using the Unit Circle
Title slug (identifier)
inequality-unit-circle
Corps

Here's an example using the main points of the unit circle to solve the inequality.

Content
Corps

Solve the following inequality:||2\cos(x−3)>1||

Solution
Corps
  1. Change the inequality symbol to an equal symbol.
    ||\begin{align}2\cos(x-3)&>1\\&\downarrow\\2\cos(x-3)&=1\end{align}||

  2. Isolate the cosine ratio.
    ||\begin{align}2\cos(x-3)&=1\\[3pt]\cos(x-3)&=\dfrac{1}{2}\end{align}||

  3. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since |\boldsymbol{\color{#333fb1}{\dfrac{1}{2}}}| is an x-coordinate of one of the main points, we can determine the angles sought directly from the unit circle.

We find that the angles with an x-coordinate of |\dfrac{1}{2}| are |\boldsymbol{\color{#fa7921}{\dfrac{\pi}{3}}}| et |\boldsymbol{\color{#51b6c2}{\dfrac{5\pi}{3}}}.|

Second column
Image
The unit circle with the 2 main points.
Corps
  1. Solve the equations.

We get the following equations, formed using the angles found in the last step, and solve them.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\cos(x-3)&=\dfrac{1}{2}\\&\Downarrow\\x-3&=\dfrac{\pi}{3}\\[3pt]\boldsymbol{\color{#fa7921}{x_1}} &=\boldsymbol{\color{#fa7921}{\dfrac{\pi+9}{3}}}\end{align}||

Second column
Corps

||\begin{align}\cos(x-3)&=\dfrac{1}{2}\\&\Downarrow\\x-3&=\dfrac{5\pi}{3}\\[3pt]\boldsymbol{\color{#51b6c2}{x_2}} &=\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}}\end{align}||

Corps
  1. Calculate the period of the cosine function.

The cosine function is periodic, so the period must be calculated to be able to give all the solutions.||\begin{align}p&=\dfrac{2\pi}{\vert b\vert}\\[3pt]&=\dfrac{2\pi}{\vert1\vert}\\[3pt]&=2\pi\end{align}||

  1. Give the solution set of the inequality.

There are 2 possible intervals. Namely, either between |\boldsymbol{\color{#fa7921}{x_1}}| and |\boldsymbol{\color{#51b6c2}{x_2}},| and between |\boldsymbol{\color{#51b6c2}{x_2}}| and the following |\boldsymbol{\color{#fa7921}{x}},| located one period farther than |\boldsymbol{\color{#fa7921}{x_1}}.| To determine which interval is part of the solution set, we can use the graph or test an |x| value in each interval.

Note: Since the inequality symbol is |>,| the boundaries of the interval are excluded from the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\left]\boldsymbol{\color{#fa7921}{\dfrac{\pi+9}{3}}},\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}}\right[||Let’s test |x=\dfrac{3\pi+9}{3}.|||\begin{align}2\cos(x−3)&>1\\[3pt]2\cos\left(\dfrac{3\pi+9}{3}−3\right)&\overset{\text{?}}{>}1\\2\cos(\pi+3−3)&\overset{\text{?}}{>}1\\2\cos(\pi)&\overset{\text{?}}{>}1\\2\times-1&\overset{\text{?}}{>}1\\-2&\color{#ec0000}{\not>}1\end{align}||This inequality is false, which means that the interval |\left]\boldsymbol{\color{#fa7921}{\dfrac{\pi+9}{3}}},\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}}\right[| is not part of the solution set.

Second column
Corps

||\begin{align}\left]\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}},\boldsymbol{\color{#fa7921}{\dfrac{\pi+9}{3}}}+p\right[&= \left]\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}},\boldsymbol{\color{#fa7921}{\dfrac{\pi+9}{3}}}+2\pi\right[\\[3pt]&=\left]\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}},\boldsymbol{\color{#fa7921}{\dfrac{7\pi+9}{3}}}\right[\end{align}||Let’s test |x=\dfrac{6\pi+9}{3}.|||\begin{align}2\cos(x−3)&>1\\[3pt]2\cos\left(\dfrac{6\pi+9}{3}−3\right)&\overset{\text{?}}{>}1\\2\cos(2\pi+3-3)&\overset{\text{?}}{>}1\\2\cos(2\pi)&\overset{\text{?}}{>}1\\2\times1&\overset{\text{?}}{>}1\\2&>1\end{align}||This inequality is true, which means that the interval |\left]\boldsymbol{\color{#51b6c2}{\dfrac{5\pi+9}{3}}},\boldsymbol{\color{#fa7921}{\dfrac{7\pi+9}{3}}}\right[| is part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since the boundaries of the interval repeat themselves in every period, the solution set of the inequality |2\cos(x−3)<1| is as follows:

||x\in\left]\dfrac{5\pi+9}{3}+2\pi n,\ \dfrac{7\pi+9}{3}+2\pi n\right[||where||n\in\mathbb{Z}||

Second column
Image
The graph that represents the solution set of the inequality.
Title (level 3)
Solving a Cosine Inequality Using |\boldsymbol{\arccos}|
Title slug (identifier)
inequality-arccos
Corps

Here's an example of how to use the inverse function arccosine to solve the inequality.

Content
Corps

Solve the following inequality:||-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2\ge-\dfrac{29}{16}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

Solve the following inequality:||-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2\ge-\dfrac{29}{16}||

Second column
Solution
Corps
  1. Change the inequality symbol to an equal symbol.
    ||\begin{align}-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2&\ge-\dfrac{29}{16}\\&\downarrow\\-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2&=-\dfrac{29}{16}\end{align}||

  2. Isolate the cosine ratio.
    ||\begin{align}-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2&=-\dfrac{29}{16}\\[3pt]-\dfrac{1}{4}\cos\!\big(3(x+7)\big)&=\dfrac{3}{16}\\[3pt]\cos\!\big(3(x+7)\big)&=-\dfrac{3}{4}\end{align}||

  3. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since |\boldsymbol{\color{#333fb1}{-\dfrac{3}{4}}}| is not an x-coordinate of one of the main points, we determine the 1st angle sought using |\arccos.|||\begin{align}\cos\!\big(3(x+7)\big)&=-\dfrac{3}{4}\\&\Downarrow\\\boldsymbol{\color{#fa7921}{3(x+7)}}&=\arccos\left(-\dfrac{3}{4}\right)\\[3pt]&\approx\boldsymbol{\color{#fa7921}{2.42}}\end{align}||The 2nd angle is found as follows:||\begin{align}\boldsymbol{\color{#51b6c2}{3(x+7)}}&\approx\boldsymbol{\color{#51b6c2}{-2.42}}\end{align}||

Second column
Image
The unit circle with the 2 points.
Corps
  1. Solve the equations.

We get the following equations, formed using the angles found in the last step, and solve them.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}3(x+7)&\approx2.42\\x+7&\approx0.81\\\boldsymbol{\color{#fa7921}{x_1}}&\approx\boldsymbol{\color{#fa7921}{-6.19}}\end{align}||

Second column
Corps

||\begin{align}3(x+7)&\approx-2.42\\x+7&\approx-0.81\\\boldsymbol{\color{#51b6c2}{x_2}}&\approx\boldsymbol{\color{#51b6c2}{-7.81}}\end{align}||

Corps
  1. Calculate the period of the cosine function.

The cosine function is periodic, so the period must be calculated to be able to give all the solutions.||\begin{align}p&=\dfrac{2\pi}{\vert b\vert}\\[3pt]&=\dfrac{2\pi}{\vert3\vert}\\[3pt]&=\dfrac{2\pi}{3}\end{align}||

  1. Give the solution set of the inequality.

There are 2 possible intervals. Namely, either between |\boldsymbol{\color{#51b6c2}{x_2}}| and |\boldsymbol{\color{#fa7921}{x_1}},| and between |\boldsymbol{\color{#fa7921}{x_1}}| and the following |\boldsymbol{\color{#51b6c2}{x}},| located one period farther than |\boldsymbol{\color{#51b6c2}{x_2}}.| To determine which interval is part of the solution set, we can use the graph or test an |x| value in each interval.

Note: Since the inequality symbol is |\ge,| the boundaries of the interval are included in the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\left[\boldsymbol{\color{#51b6c2}{-7.81}},\,\boldsymbol{\color{#fa7921}{-6.19}}\right]||Let’s test |x=-7.|||\begin{align}-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2&\ge-\dfrac{29}{16}\\[3pt]-\dfrac{1}{4}\cos\!\big(3(-7+7)\big)-2&\overset{\text{?}}{\ge}-\dfrac{29}{16}\\[3pt]-\dfrac{1}{4}\cos(0)-2&\overset{\text{?}}{\ge}-\dfrac{29}{16}\\[3pt]-2.25&\color{#ec0000}{\not\ge}-1.81\end{align}||This inequality is false, which means that the interval
|\left[\boldsymbol{\color{#51b6c2}{-7.81}},\,\boldsymbol{\color{#fa7921}{-6.19}}\right]| is not part of the solution set.

Second column
Corps

||\begin{align}[\boldsymbol{\color{#fa7921}{-6.19}},\,\boldsymbol{\color{#51b6c2}{-7.81}}+p]&=\left[\boldsymbol{\color{#fa7921}{-6.19}},\boldsymbol{\color{#51b6c2}{-7.81}}+\dfrac{2\pi}{3}\right]\\[3pt]&=[\boldsymbol{\color{#fa7921}{-6.19}},\,\boldsymbol{\color{#51b6c2}{-5.72}}]\end{align}||Let’s test |x=-6.|||\begin{align}-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2&\ge-\dfrac{29}{16}\\[3pt]-\dfrac{1}{4}\cos\!\big(3(-6+7)\big)-2&\overset{\text{?}}{\ge}-\dfrac{29}{16}\\[3pt]-\dfrac{1}{4}\cos(3)-2&\overset{\text{?}}{\ge}-\dfrac{29}{16}\\[3pt]-1.75&\ge-1.81\end{align}||This inequality is true, which means that the interval |\left[\boldsymbol{\color{#fa7921}{-6.19}},\,\boldsymbol{\color{#51b6c2}{-5.72}}\right]| is part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since the boundaries of the interval repeat themselves in every period, the solution set of the inequality |-\dfrac{1}{4}\cos\!\big(3(x+7)\big)-2\ge-\dfrac{29}{16}| is as follows:

||x\in\left[-6.19+\dfrac{2\pi}{3}n,\,-5.72+\dfrac{2\pi}{3}n\right]||where||n\in\mathbb{Z}||

Second column
Image
The graph representing the solution set of the inequality.
Title (level 3)
Exercise - Solving a Cosine Inequality
Title slug (identifier)
exercise-inequality
Largeur de l'exercice
720
Hauteur de l'exercice
720
Title (level 3)
Solving a 2nd Degree Cosine Inequality
Title slug (identifier)
inequality-2nd-degree
Corps

Here's an example of solving a 2nd degree cosine inequality.

Content
Corps

Solve the following inequality:||\cos^2(x)<\dfrac{1}{4}||

Solution
Corps
  1. Change the inequality symbol to an equal symbol.
    ||\begin{align}\cos^2(x)&<\dfrac{1}{4}\\&\downarrow\\\cos^2(x)&=\dfrac{1}{4}\end{align}||

  2. Isolate the cosine ratio.
    ||\begin{align}\cos^2(x)&=\dfrac{1}{4}\\[3pt]\cos(x)&=\pm\sqrt{\dfrac{1}{4}}\\[3pt]\cos(x)&=\pm\dfrac{1}{2}\end{align}||

  3. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since |\boldsymbol{\color{#333fb1}{-\dfrac{1}{2}}}| and |\boldsymbol{\color{#333fb1}{\dfrac{1}{2}}}| are x-coordinates of main points, we can find the angles sought directly from the unit circle.

We find that the angles when the x-coordinate is |\dfrac{1}{2}| are |\boldsymbol{\color{#fa7921}{\dfrac{\pi}{3}}}| and |\boldsymbol{\color{#ff55c3}{\dfrac{5\pi}{3}}},| and the angles when the x-coordinate is |-\dfrac{1}{2}| are |\boldsymbol{\color{#51b6c2}{\dfrac{2\pi}{3}}}| and |\boldsymbol{\color{#3a9a38}{\dfrac{4\pi}{3}}}.|

Second column
Image
The unit circle with the 4 main points.
Corps
  1. Solve the equations.

We get the following equations, formed using the angles found in the last step, and solve them.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\cos(x)&=\dfrac{1}{2}\\&\Downarrow\\\boldsymbol{\color{#fa7921}{x_1}}&=\boldsymbol{\color{#fa7921}{\dfrac{\pi}{3}}}\end{align}||

Second column
Corps

||\begin{align}\cos(x)&=-\dfrac{1}{2}\\&\Downarrow\\\boldsymbol{\color{#51b6c2}{x_2}}&=\boldsymbol{\color{#51b6c2}{\dfrac{2\pi}{3}}}\end{align}||

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\cos(x)&=-\dfrac{1}{2}\\&\Downarrow\\\boldsymbol{\color{#3a9a38}{x_3}}&=\boldsymbol{\color{#3a9a38}{\dfrac{4\pi}{3}}}\end{align}||

Second column
Corps

||\begin{align}\cos(x)&=\dfrac{1}{2}\\&\Downarrow\\\boldsymbol{\color{#ff55c3}{x_4}}&=\boldsymbol{\color{#ff55c3}{\dfrac{5\pi}{3}}}\end{align}||

Corps
  1. Calculate the period of the cosine function.

The cosine function is periodic, so the period must be calculated to be able to give all the solutions.||\begin{align}p&=\dfrac{2\pi}{\vert b\vert}\\[3pt]&=\dfrac{2\pi}{\vert1\vert}\\[3pt]&=2\pi\end{align}||

  1. Give the solution set of the inequality.

There are 4 possible intervals. Namely, between |\boldsymbol{\color{#fa7921}{x_1}}| and |\boldsymbol{\color{#51b6c2}{x_2}},| between |\boldsymbol{\color{#51b6c2}{x_2}}| and |\boldsymbol{\color{#3a9a38}{x_3}},| between |\boldsymbol{\color{#3a9a38}{x_3}}| and |\boldsymbol{\color{#ff55c3}{x_4}},| and between |\boldsymbol{\color{#ff55c3}{x_4}}| and the following |\boldsymbol{\color{#fa7921}{x}}| located one period farther than |\boldsymbol{\color{#fa7921}{x_1}}.| To determine which interval is part of the solution set, we can use the graph or test a |x| value in each interval.

Note: Since the inequality symbol is |<,| the boundaries of the interval are excluded from the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\left]\boldsymbol{\color{#fa7921}{\dfrac{\pi}{3}},\color{#51b6c2}{\dfrac{2\pi}{3}}}\right[||Let’s test |x=\dfrac{\pi}{2}.|||\begin{align}\cos^2(x)&<\dfrac{1}{4}\\[3pt]\cos^2\left(\dfrac{\pi}{2}\right)&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt](0)^2&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt]0&<\dfrac{1}{4}\end{align}||This inequality is true, which means that the interval |\left]\boldsymbol{\color{#fa7921}{\dfrac{\pi}{3}},\color{#51b6c2}{\dfrac{2\pi}{3}}}\right[| is part of the solution set.

Second column
Corps

||\left]\boldsymbol{\color{#51b6c2}{\dfrac{2\pi}{3}},\color{#3a9a38}{\dfrac{4\pi}{3}}}\right[||Let’s test |x=\pi.|||\begin{align}\cos^2(x)&<\dfrac{1}{4}\\[3pt]\cos^2(\pi)&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt](-1)^2&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt]1&\color{#ec0000}{\not<}\dfrac{1}{4}\end{align}||This inequality is false, which means that the interval |\left]\boldsymbol{\color{#51b6c2}{\dfrac{2\pi}{3}},\color{#3a9a38}{\dfrac{4\pi}{3}}}\right[| is not part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\left]\boldsymbol{\color{#3a9a38}{\dfrac{4\pi}{3}},\color{#ff55c3}{\dfrac{5\pi}{3}}}\right[||Let’s test |x=\dfrac{3\pi}{2}.|||\begin{align}\cos^2(x)&<\dfrac{1}{4}\\[3pt]\cos^2\left(\dfrac{3\pi}{2}\right)&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt](0)^2&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt]0&<\dfrac{1}{4}\end{align}||This inequality is true, which means that the interval |\left]\boldsymbol{\color{#3a9a38}{\dfrac{4\pi}{3}},\color{#ff55c3}{\dfrac{5\pi}{3}}}\right[| is part of the solution set.

Second column
Corps

||\begin{align}\left]\boldsymbol{\color{#ff55c3}{\dfrac{5\pi}{3}},\color{#fa7921}{\dfrac{\pi}{3}}}+p\right[&=\left]\boldsymbol{\color{#ff55c3}{\dfrac{5\pi}{3}},{\color{#fa7921}{\dfrac{\pi}{3}}}}+2\pi\right[\\[3pt]&=\left]\boldsymbol{\color{#ff55c3}{\dfrac{5\pi}{3}},{\color{#fa7921}{\dfrac{7\pi}{3}}}}\right[\end{align}||Let’s test |x=2\pi.|||\begin{align}\cos^2(x)&<\dfrac{1}{4}\\[3pt]\cos^2(2\pi)&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt](1)^2&\overset{\text{?}}{<}\dfrac{1}{4}\\[3pt]1&\color{#ec0000}{\not<}\dfrac{1}{4}\end{align}||This inequality is false, which means that the interval |\left]\boldsymbol{\color{#ff55c3}{\dfrac{5\pi}{3}},{\color{#fa7921}{\dfrac{7\pi}{3}}}}\right[| is not part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since the boundaries of the interval repeat themselves in every period, the solution set of the inequality |\cos^2(x)<\dfrac{1}{4}| is as follows:

||x\in\left]\dfrac{\pi}{3}+2\pi n,\ \dfrac{2\pi}{3}+2\pi n\right[\ \cup\ \left]\dfrac{4\pi}{3}+2\pi n,\ \dfrac{5\pi}{3}+2\pi n\right[||where||n\in\mathbb{Z}||

We can also write the solution set as follows:

||x\in\left]\dfrac{\pi}{3}+\pi n,\ \dfrac{2\pi}{3}+\pi n\right[||where||n\in\mathbb{Z}||

Second column
Corps

We can use a technology tool to graph the 2nd degree cosine function. Drawing such a graph is not part of the high school curriculum.

Image
The graph representing the solution set of the inequality.
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No
Printable tool
Off