Content code
m1420
Slug (identifier)
solving-a-tangent-equation-or-inequality
Grades
Secondary V
Topic
Mathematics
Tags
unit circle
tangent function
solve trigonometric equation
solve trigonometric inequality
arctan
arctangent
Content
Contenu
Content
Corps

A tangent equation or inequality contains a tangent ratio, where the unknown |(x)| is found in the argument.

Corps

Since the tangent function is periodic, this type of equation may have no solution, one solution, several solutions, or an infinite number of solutions.

Also, we need to use the angles in radians.

Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

In the unit circle, the tangent of an angle corresponds to the ratio of the y-coordinate and the x-coordinate of the point on the circle. When solving a tangent equation, we can use the main points of the unit circle or the inverse function |\boldsymbol{\arctan}.|

When using the inverse function |\arctan,| the result obtained is always an angle in the 1st quadrant or the 4th quadrant of the unit circle. In other words, the angle is between |-\dfrac{\pi}{2}| and |\dfrac{\pi}{2}.|

Second column
Image
Any angle in the unit circle.
Content
Corps

The inverse function |\arctan| is sometimes denoted |\tan^{-1},| especially on calculators.

Content
Corps

There are some main values for the tangent ratio, which can be used when solving a tangent equation or inequality.

Image
The main points of half the unit circle with the tangent of their angle.
Corps

These values are obtained by dividing the |y| and |x| coordinates of the main points located in the 1st and 4th quadrants of the unit circle. Here's an example of the calculation using the angle |-\dfrac{\pi}{6}.| ||\begin{align}\tan\left(-\dfrac{\pi}{6}\right)&=\dfrac{\sin\left(-\dfrac{\pi}{6}\right)}{\cos\left(-\dfrac{\pi}{6}\right)}\\[3pt]&=\dfrac{-\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\\[3pt]&=-\dfrac{1}{\color{#ec0000}{\cancel{\color{black}{2}}}}\times\dfrac{\color{#ec0000}{\cancel{\color{black}{2}}}}{\sqrt{3}}\\[3pt]&=-\dfrac{1}{\sqrt{3}}\boldsymbol{\color{#ec0000}{\times\dfrac{\sqrt{3}}{\sqrt{3}}}}\\[3pt]&=-\dfrac{\sqrt{3}}{3}\end{align}||Note: There is no main value for the angles |\dfrac{\pi}{2}| and |-\dfrac{\pi}{2},| since we get a division by |0.| For this reason, the basic |\tan(x)| function has asymptotes at |x=\dfrac{\pi}{2}| and |x=-\dfrac{\pi}{2}.|

Links
Title (level 2)
Solving a Tangent Equation
Title slug (identifier)
solving-tangent-equation
Contenu
Corps

The procedure for solving a tangent equation is as follows:

Content
Corps
  1. Isolate the tangent ratio.

  2. Determine the trigonometric angle using the table of main values or the inverse function |\boldsymbol{\arctan}.|

  3. Solve the equation obtained with the trigonometric angle.

  4. Calculate the period of the tangent function.

  5. Give the solutions of the equation.

Links
Title (level 3)
Solving a Tangent Equation Using the Table of Main Values
Title slug (identifier)
equation-table
Corps

Here's an example using the table of main values of the tangent ratio to solve the equation.

Content
Corps

Solve the following equation:||\tan(2x)-3=-2||

Columns number
2 columns
Format
50% / 50%
First column
Corps

Solve the following equation:||\tan(2x)-3=-2||

Second column
Solution
Corps
  1. Isolate the tangent ratio.
    ||\begin{align}\tan(2x)-3&=-2\\\tan(2x)&=1\end{align}||

  2. Determine the trigonometric angle.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Main Values of the Tangent Ratio

Angle

Tangent of the angle

||\dfrac{\pi}{3}||

||\sqrt{3}||

||\boldsymbol{\color{#fa7921}{\dfrac{\pi}{4}}}||

||\boldsymbol{\color{#c58ae1}{1}}||

||\dfrac{\pi}{6}||

||\dfrac{\sqrt{3}}{3}||

||0||

||0||

||-\dfrac{\pi}{6}||

||-\dfrac{\sqrt{3}}{3}||

||-\dfrac{\pi}{4}||

||-1||

||-\dfrac{\pi}{3}||

||-\sqrt{3}||

Second column
Corps

Since |\boldsymbol{\color{#c58ae1}{1}}| is a main value of the tangent ratio, we can determine the angles sought directly from the table of main values.

We find that the angle with a tangent ratio of |1| is |\boldsymbol{\color{#fa7921}{\dfrac{\pi}{4}}}.|

Corps
  1. Solve the equation.
    ||\begin{align}\tan(2x)&=1\\ &\Downarrow\\2x&=\dfrac{\pi}{4}\\[3pt]\boldsymbol{\color{#fa7921}{x_1}}&=\boldsymbol{\color{#fa7921}{\dfrac{\pi}{8}}}\end{align}||

  2. Calculate the period of the tangent function.

The tangent function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{\pi}{\vert b\vert}\\[3pt]&=\dfrac{\pi}{\vert2\vert}\\[3pt]&=\dfrac{\pi}{2}\end{align}||

  1. Give the solutions of the equation.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The solutions of the equation |\tan(2x)-3=-2| are as follows:

||x=\dfrac{\pi}{8}+\dfrac{\pi}{2}n||where||n\in\mathbb{Z}||

Second column
Image
Graph showing the solutions of the equation.
Title (level 3)
Solving a Tangent Equation Using |\boldsymbol{\arctan}|
Title slug (identifier)
equation-arctan
Corps

Here's an example using the inverse function arctangent to solve the equation.

Content
Corps

Solve the following equation for the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right].|||5\tan\big(\!-4(x+1)\big)+2=6||

Solution
Corps
  1. Isolate the tangent ratio.
    ||\begin{align}5\tan\big(\!-4(x+1)\big)+2&=6\\5\tan\big(\!-4(x+1)\big)&=4\\\tan\big(\!-4(x+1)\big)&=\dfrac{4}{5}\end{align}||

  2. Determine the trigonometric angle.

We determine the angle sought using |\arctan.|||\begin{align}\tan\big(\!-4(x+1)\big)&=\dfrac{4}{5}\\&\Downarrow\\\boldsymbol{\color{#fa7921}{-4(x+1)}}&=\arctan\left(\dfrac{4}{5}\right)\\[3pt]&\approx\boldsymbol{\color{#fa7921}{0.67}}\end{align}||

  1. Solve the equation.

We get the following equation that is formed from the angle found in the last step, and solve it.||\begin{align}-4(x+1)&\approx0.67\\x+1&\approx-0.17\\\boldsymbol{\color{#fa7921}{x_1}}&\approx\boldsymbol{\color{#fa7921}{-1.17}}\end{align}||

  1. Calculate the period of the tangent function.

The tangent function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{\pi}{\vert b\vert}\\[3pt]&=\dfrac{\pi}{\vert-4\vert}\\[3pt]&=\dfrac{\pi}{4}\end{align}||

  1. Give the solutions of the equation.

Since we're looking for solutions within the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right],| there are a finite number of solutions. The other solutions are calculated by adding or subtracting the period |\left(\dfrac{\pi}{4}\right)| to the value found in Step 3, without exceeding the interval.

We reject |-1.17,| since this value is larger than |-\dfrac{\pi}{2}.|||\begin{align}x&\approx-1.17-\dfrac{\pi}{4}\\[3pt]&\approx-1.95\end{align}||We keep |-1.95,| since this value is found inside the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right].|||\begin{align}x&\approx-1.95-\dfrac{\pi}{4}\\[3pt]&\approx-2.74\end{align}||We keep |-2.74,| since this value is found inside the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right].|||\begin{align}x&\approx-2.74-\dfrac{\pi}{4}\\[3pt]&\approx-3.52\end{align}||We keep |-3.52,| since this value is found inside the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right].||\begin{align}x&\approx-3.52-\dfrac{\pi}{4}\\[3pt]&\approx-4.31\end{align}||We keep |-4.31,| since this value is found inside the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right].|||\begin{align}x&\approx-4.31-\dfrac{\pi}{4}\\[3pt]&\approx-5.1\end{align}||We reject |-5.1,| since this value is less than |-\dfrac{3\pi}{2}.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

The solutions of the equation |5\tan\big(\!-4(x+1)\big)+2=6| for the interval |\left[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}\right]| are the following:||x\in\{-4.31,\ -3.52,\ -2.74,\ -1.95\}||

Second column
Image
Graph showing the solutions of the equation.
Title (level 3)
Exercise - Solving a Tangent Equation
Title slug (identifier)
exercise-equation
Largeur de l'exercice
720
Hauteur de l'exercice
720
Title (level 3)
Solving a 2nd Degree Tangent Equation
Title slug (identifier)
equation-2nd-degree
Corps

Here's an example of solving a 2nd degree tangent equation.

Content
Corps

Solve the following equation:||2\tan^2(x-2)-5\tan(x-2)+2=0||

Solution
Corps

A tangent equation of this type can be solved using the same strategies we use to solve a 2nd degree polynomial equation. In other words, you can use factoring or the quadratic formula.

To do so, we need to change the variable by replacing |\tan(x-2)| with |z.| This way, we can temporarily set aside the tangent ratios and concentrate on solving the 2nd degree polynomial.

The result is the following equation:||2\tan^2(x-2)-5\tan(x-2)+2=0\\\Updownarrow\\2z^2-5z+2=0||Using the quadratic formula, we obtain the following solutions for |z|:||\begin{align}z_{1,2}&=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\[3pt]&=\dfrac{-(-5)\pm\sqrt{(-5)^2-4(2)(2)}}{2(2)}\\[3pt]&=\dfrac{5\pm\sqrt{9}}{4}\\\\z_1&=\dfrac{1}{2}\quad\text{et}\quad z_2=2\end{align}||The solutions of the equation |2z^2-5z+2=0| are therefore |z_1=\dfrac{1}{2}| and |z_2=2.| Since we changed variables, we can substitute |z| with |\tan(x-2).| We get the following 2 equations:

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\tan(x-2)=\dfrac{1}{2}||

Second column
Corps

||\tan(x-2)=2||

Corps

We can now proceed as we would for a 1st degree tangent equation.

  1. Isolate the tangent ratio.

The tangent ratio is already isolated in both equations.

  1. Determine the trigonometric angles.

We determine the 2 angles sought using |\arctan| in both equations.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\tan(x-2)&=\dfrac{1}{2}\\&\Downarrow\\\boldsymbol{\color{#fa7921}{x-2}}&=\arctan\left(\dfrac{1}{2}\right)\\[3pt]&\approx\boldsymbol{\color{#fa7921}{0.46}}\end{align}||

Second column
Corps

||\begin{align}\tan(x-2)&=2\\&\Downarrow\\\boldsymbol{\color{#51b6c2}{x-2}}&=\arctan(2)\\&\approx\boldsymbol{\color{#51b6c2}{1.11}}\end{align}||

Corps
  1. Solve the equations.

We get the following 2 equations, which are formed using the angles found in the last step, and solve them.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}x-2&\approx0.46\\\boldsymbol{\color{#fa7921}{x_1}}&\approx\boldsymbol{\color{#fa7921}{2.46}}\end{align}||

Second column
Corps

||\begin{align}x-2&\approx1.11\\\boldsymbol{\color{#51b6c2}{x_2}}&\approx\boldsymbol{\color{#51b6c2}{3.11}}\end{align}||

Corps
  1. Calculate the period of the tangent function.

The tangent function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{\pi}{\vert b\vert}\\[3pt]&=\dfrac{\pi}{\vert1\vert}\\[3pt]&=\pi\end{align}||

  1. Give the solutions to the equation.

Columns number
2 columns
Format
50% / 50%
First column
Corps

The solutions to the equation |2\tan^2(x-2)-5\tan(x-2)+2=0| are the following:

||x\in\left\{2.46+\pi n,\ 3.11+\pi n\right\}||where||n\in\mathbb{Z}||

Second column
Corps

We can use a technological tool to plot the solutions on the graph of the 2nd degree tangent function. Sketching this sort of graph is not part of the high school curriculum.

Image
Graph showing the solutions of the equation.
Title (level 2)
Solving a Tangent Inequality
Title slug (identifier)
solving-tangent-inequality
Contenu
Corps

The procedure for solving a tangent inequality is as follows:

Content
Corps
  1. Change the inequality symbol to an equal symbol.

  2. Isolate the tangent ratio.

  3. Determine the trigonometric angle using the table of main values or the inverse function |\boldsymbol{\arctan}.|

  4. Solve the equations obtained with the trigonometric angles.

  5. Calculate the period of the tangent function.

  6. Calculate the asymptotes of the tangent function.

  7. Give the solution set of the inequality.

Links
Title (level 3)
Solving a Tangent Inequality Using the Table of Main Values
Title slug (identifier)
inequality-table
Corps

Here's an example using the table of main points tangent values to solve the inequality.

Content
Corps

Solve the following inequality:||3\tan\left(\dfrac{x}{4}\right)>-\sqrt{3}||

Solution
Corps
  1. Change the inequality symbol to an equal symbol.
    ||\begin{align}3\tan\left(\dfrac{x}{4}\right)&>-\sqrt{3}\\&\downarrow\\3\tan\left(\dfrac{x}{4}\right)&=-\sqrt{3}\end{align}||

  2. Isolate the tangent ratio.
    ||\begin{align}3\tan\left(\dfrac{x}{4}\right)&=-\sqrt{3}\\[3pt]\tan\left(\dfrac{x}{4}\right)&=-\dfrac{\sqrt{3}}{3}\end{align}||

  3. Determine the trigonometric angles.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Main Values of the Tangent Ratio

Angle

Tangent of the angle

||\dfrac{\pi}{3}||

||\sqrt{3}||

||\dfrac{\pi}{4}||

||1||

||\dfrac{\pi}{6}||

||\dfrac{\sqrt{3}}{3}||

||0||

||0||

||\boldsymbol{\color{#fa7921}{-\dfrac{\pi}{6}}}||

||\boldsymbol{\color{#c58ae1}{-\dfrac{\sqrt{3}}{3}}}||

||-\dfrac{\pi}{4}||

||-1||

||-\dfrac{\pi}{3}||

||-\sqrt{3}||

Second column
Corps

Since |\boldsymbol{\color{#c58ae1}{-\dfrac{\sqrt{3}}{3}}}| is a main value of the tangent ratio, we can determine the angles sought directly from the table of main values.

We find that the angle with a tangent ratio of |-\dfrac{\sqrt{3}}{3}| is |\boldsymbol{\color{#fa7921}{-\dfrac{\pi}{6}}}.|

Corps
  1. Solve the equations.
    ||\begin{align}\tan\left(\dfrac{x}{4}\right)&=-\dfrac{\sqrt{3}}{3}\\ &\Downarrow\\\dfrac{x}{4}&=-\dfrac{\pi}{6}\\[3pt]\boldsymbol{\color{#fa7921}{x_1}}&=\boldsymbol{\color{#fa7921}{-\dfrac{2\pi}{3}}}\end{align}||

  2. Calculate the period of the tangent function.

The tangent function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{\pi}{\vert b\vert}\\[3pt]&=\dfrac{\pi}{\vert\frac{1}{4}\vert}\\[3pt]&=4\pi\end{align}||

  1. Calculate the asymptotes of the tangent function.

We calculate the asymptotes on either side of |\boldsymbol{\color{#fa7921}{x_1}}.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

Asymptote before |\boldsymbol{x_1}|

||\begin{align}\boldsymbol{\color{#333fb1}{x_0}}&=h-\dfrac{p}{2}\\[3pt]&=0-\dfrac{4\pi}{2}\\[3pt]&=\boldsymbol{\color{#333fb1}{-2\pi}}\end{align}||

Second column
Corps

Asymptote after |\boldsymbol{x_1}|

||\begin{align}\boldsymbol{\color{#ec0000}{x_2}}&=h+\dfrac{p}{2}\\[3pt]&=0+\dfrac{4\pi}{2}\\[3pt]&=\boldsymbol{\color{#ec0000}{2\pi}}\end{align}||

Corps
  1. Give the solution set of the inequality.

There are 2 possible intervals: either between the lower asymptote |\boldsymbol{(\color{#333fb1}{x_0})}| and |\boldsymbol{\color{#fa7921}{x_1}},| or between |\boldsymbol{\color{#fa7921}{x_1}}| and the upper asymptote |\boldsymbol{(\color{#ec0000}{x_2})}.| To determine which interval is part of the solution set, we can use the graph or test an |x| value in each interval.

Note: Since the inequality symbol is |>,| the boundary associated with |\boldsymbol{\color{#fa7921}{x_1}}| is excluded from the solution set. Moreover, any boundary associated with an asymptote is always excluded.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\left]\boldsymbol{\color{#333fb1}{-2\pi}},\boldsymbol{\color{#fa7921}{-\dfrac{2\pi}{3}}}\right[||Let’s test |x=-\pi.|||\begin{align}3\tan\left(\dfrac{x}{4}\right)&>-\sqrt{3}\\[3pt]3\tan\left(\dfrac{-\pi}{4}\right)&\overset{\text{?}}{>}-\sqrt{3}\\3\times-1&\overset{\text{?}}{>}-\sqrt{3}\\-3&\color{#ec0000}{\not>}-\sqrt{3}\end{align}||This inequality is false, which means that the interval |\left]\boldsymbol{\color{#333fb1}{-2\pi}},\boldsymbol{\color{#fa7921}{-\dfrac{2\pi}{3}}}\right[| is not part of the solution set.

Second column
Corps

||\left]\boldsymbol{\color{#fa7921}{-\dfrac{2\pi}{3}}},\boldsymbol{\color{#ec0000}{2\pi}}\right[||Let’s test |x=0.|||\begin{align}3\tan\left(\dfrac{x}{4}\right)&>-\sqrt{3}\\[3pt]3\tan\left(\dfrac{0}{4}\right)&\overset{\text{?}}{>}-\sqrt{3}\\3\times0&\overset{\text{?}}{>}-\sqrt{3}\\0&>-\sqrt{3}\end{align}||This inequality is true, which means that the interval |\left]\boldsymbol{\color{#fa7921}{-\dfrac{2\pi}{3}}},\boldsymbol{\color{#ec0000}{2\pi}}\right[| is part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since the boundaries of the interval repeat themselves in every period, the solution set of the inequality |3\tan\left(\dfrac{x}{4}\right)>-\sqrt{3}| is as follows:

||x\in\left]-\dfrac{2\pi}{3}+4\pi n,\ 2\pi+4\pi n\right[||where||n\in\mathbb{Z}||

Second column
Image
The graph representing the solution set of the inequality.
Title (level 3)
Solving a Tangent Inequality Using |\boldsymbol{\arctan}|
Title slug (identifier)
inequality-arctan
Corps

Here's an example using the inverse function arctangent to solve the inequality.

Content
Corps

Solve the following inequality:||\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6\le-5||

Columns number
2 columns
Format
50% / 50%
First column
Corps

Solve the following inequality:||\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6\le-5||

Solution
Corps
  1. Change the inequality symbol to an equal symbol.
    ||\begin{align}\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6&\le-5\\&\downarrow\\\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6&=-5\end{align}||

  2. Isolate the tangent ratio.
    ||\begin{align}\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6&=-5\\[3pt]\dfrac{1}{4}\tan\big(2(x-\pi)\big)&=1\\[3pt]\tan\big(2(x-\pi)\big)&=4\end{align}||

  3. Determine the trigonometric angles.

We determine the angle sought using |\arctan.|||\begin{align}\tan\big(2(x-\pi)\big)&=4\\&\Downarrow\\\boldsymbol{\color{#fa7921}{2(x-\pi)}}&=\arctan\left(4\right)\\&\approx\boldsymbol{\color{#fa7921}{1.33}}\end{align}||

  1. Solve the equation.
    ||\begin{align}2(x-\pi)&\approx1.33\\x-\pi&\approx0.66\\\boldsymbol{\color{#fa7921}{x_1}}&\approx\boldsymbol{\color{#fa7921}{3.8}}\end{align}||

  2. Calculate the period of the tangent function.

The tangent function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{\pi}{\vert b\vert}\\[3pt]&=\dfrac{\pi}{\vert2\vert}\\[3pt]&=\dfrac{\pi}{2}\end{align}||

  1. Calculate the asymptotes of the tangent function.

We calculate the asymptotes on either side of |\boldsymbol{\color{#fa7921}{x_1}}.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

Asymptote before |\boldsymbol{x_1}|

||\begin{align}\boldsymbol{\color{#333fb1}{x_0}}&=h-\dfrac{p}{2}\\[3pt]&=\pi-\dfrac{\frac{\pi}{2}}{2}\\[3pt]&=\pi-\dfrac{\pi}{4}\\[3pt]&=\boldsymbol{\color{#333fb1}{\dfrac{3\pi}{4}}}\end{align}||

Second column
Corps

Asymptote after |\boldsymbol{x_1}|

||\begin{align}\boldsymbol{\color{#ec0000}{x_2}}&=h+\dfrac{p}{2}\\[3pt]&=\pi+\dfrac{\frac{\pi}{2}}{2}\\[3pt]&=\pi+\dfrac{\pi}{4}\\[3pt]&=\boldsymbol{\color{#ec0000}{\dfrac{5\pi}{4}}}\end{align}||

Corps
  1. Give the solution set of the inequality.

There are 2 possible intervals: either between the lower asymptote |\boldsymbol{(\color{#333fb1}{x_0})}| and |\boldsymbol{\color{#fa7921}{x_1}},| or between |\boldsymbol{\color{#fa7921}{x_1}}| and the upper asymptote |\boldsymbol{(\color{#ec0000}{x_2})}.| To determine which interval is part of the solution set, we can use the graph or test an |x| value in each interval.

Note: Since the inequality symbol is |\le,| the boundary associated with |\boldsymbol{\color{#fa7921}{x_1}}| is included in the solution set. Moreover, any boundary associated with an asymptote is always excluded.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\left]\boldsymbol{\color{#333fb1}{\dfrac{3\pi}{4}}},\boldsymbol{\color{#fa7921}{3.8}}\right]||Let’s test |x=\pi.|||\begin{align}\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6&\le-5\\[3pt]\dfrac{1}{4}\tan\big(2(\pi-\pi)\big)-6&\overset{\text{?}}{\le}-5\\[3pt]\dfrac{1}{4}\tan(0)-6&\overset{\text{?}}{\le}-5\\[3pt]\dfrac{1}{4}\times0-6&\overset{\text{?}}{\le}-5\\[3pt]-6&\le-5\end{align}||This inequality is true, which means that the interval |\left]\boldsymbol{\color{#333fb1}{\dfrac{3\pi}{4}}},\boldsymbol{\color{#fa7921}{3.8}}\right]| is part of the solution set.

Second column
Corps

||\left[\boldsymbol{\color{#fa7921}{3.8}},\boldsymbol{\color{#ec0000}{\dfrac{5\pi}{4}}}\right[||Let’s test |x=3.85.|||\begin{align}\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6&\le-5\\[3pt]\dfrac{1}{4}\tan\big(2(3{,}85-\pi)\big)-6&\overset{\text{?}}{\le}-5\\[3pt]\dfrac{1}{4}\times6.44-6&\overset{\text{?}}{\le}-5\\[3pt]-4.39&\color{#ec0000}{\not\le}-5\end{align}||This inequality is false, which means that the interval
|\left[\boldsymbol{\color{#fa7921}{3.8}},\boldsymbol{\color{#ec0000}{\dfrac{5\pi}{4}}}\right[| is not part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since the boundaries of the interval repeat themselves in every period, the solution set of the inequality |\dfrac{1}{4}\tan\big(2(x-\pi)\big)-6\le-5| is as follows:

||x\in\left]\dfrac{3\pi}{4}+\dfrac{\pi}{2}n,\ 3.8+\dfrac{\pi}{2}n\right]||where||n\in\mathbb{Z}||

Second column
Image
The graph representing the solution set of the inequality.
Title (level 3)
Exercise - Solving a Tangent Inequality
Title slug (identifier)
exercise-solving-a-tangent-inequality
Largeur de l'exercice
720
Hauteur de l'exercice
720
Title (level 3)
Solving a 2nd Degree Tangent Inequality
Title slug (identifier)
inequality-2nd-degree
Corps

Here's an example of solving a 2nd degree tangent inequality.

Content
Corps

Solve the following inequality:||\tan^2\left(\dfrac{2x}{3}\right)\ge\dfrac{16}{9}||

Solution
Corps
  1. Change the inequality symbol to an equal symbol.
    ||\begin{align}\tan^2\left(\dfrac{2x}{3}\right)&\ge\dfrac{16}{9}\\&\downarrow\\\tan^2\left(\dfrac{2x}{3}\right)&=\dfrac{16}{9}\end{align}||

  2. Isolate the tangent ratio.
    ||\begin{align}\tan^2\left(\dfrac{2x}{3}\right)&=\dfrac{16}{9}\\[3pt]\tan\left(\dfrac{2x}{3}\right)&=\pm\sqrt{\dfrac{16}{9}}\\[3pt]\tan\left(\dfrac{2x}{3}\right)&=\pm\dfrac{4}{3}\end{align}||

  3. Determine the trigonometric angles.

We determine the 2 angles sought by using |\arctan| in both equations.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\tan\left(\dfrac{2x}{3}\right)&=-\dfrac{4}{3}\\&\Downarrow\\\boldsymbol{\color{#fa7921}{\dfrac{2x}{3}}}&=\arctan\left(-\dfrac{4}{3}\right)\\[3pt]&\approx\boldsymbol{\color{#fa7921}{-0.93}}\end{align}||

Second column
Corps

||\begin{align}\tan\left(\dfrac{2x}{3}\right)&=\dfrac{4}{3}\\&\Downarrow\\\boldsymbol{\color{#51b6c2}{\dfrac{2x}{3}}}&=\arctan\left(\dfrac{4}{3}\right)\\[3pt]&\approx\boldsymbol{\color{#51b6c2}{0.93}}\end{align}||

Corps
  1. Solve the equations.

We get the following equations, formed using the angles found in the last step, and solve them.

Columns number
2 columns
Format
50% / 50%
First column
Corps

||\begin{align}\dfrac{2x}{3}&\approx-0.93\\[3pt]\boldsymbol{\color{#fa7921}{x_1}}&\approx\boldsymbol{\color{#fa7921}{-1.39}}\end{align}||

Second column
Corps

||\begin{align}\dfrac{2x}{3}&\approx0.93\\[3pt]\boldsymbol{\color{#51b6c2}{x_2}}&\approx\boldsymbol{\color{#51b6c2}{1.39}}\end{align}||

Corps
  1. Calculate the period of the tangent function.

The tangent function is periodic, so we need to calculate the period in order to determine all the solutions.||\begin{align}p&=\dfrac{\pi}{\vert b\vert}\\[3pt]&=\dfrac{\pi}{\left\vert\frac{2}{3}\right\vert}\\[3pt]&=\dfrac{3\pi}{2}\end{align}||

  1. Calculate the asymptotes of the tangent function.

We calculate the asymptotes on either side of |\boldsymbol{\color{#fa7921}{x_1}}| and |\boldsymbol{\color{#51b6c2}{x_2}}.|

Columns number
2 columns
Format
50% / 50%
First column
Corps

Asymptote before |\boldsymbol{x_1}|

||\begin{align}\boldsymbol{\color{#333fb1}{x_0}}&=h-\dfrac{p}{2}\\[3pt]&=0-\dfrac{\frac{3\pi}{2}}{2}\\[3pt]&=\boldsymbol{\color{#333fb1}{-\dfrac{3\pi}{4}}}\end{align}||

Second column
Corps

Asymptote after |\boldsymbol{x_2}|

||\begin{align}\boldsymbol{\color{#ec0000}{x_3}}&=h+\dfrac{p}{2}\\[3pt]&=0+\dfrac{\frac{3\pi}{2}}{2}\\[3pt]&=\boldsymbol{\color{#ec0000}{\dfrac{3\pi}{4}}}\end{align}||

Corps
  1. Give the solution set of the inequality.

There are 3 possible intervals: between the lower asymptote |\boldsymbol{(\color{#333fb1}{x_0})}| and |\boldsymbol{\color{#fa7921}{x_1}};| between |\boldsymbol{\color{#fa7921}{x_1}}| and |\boldsymbol{\color{#51b6c2}{x_2}};| and between |\boldsymbol{\color{#51b6c2}{x_2}}| and the upper asymptote |\boldsymbol{(\color{#ec0000}{x_3})}.| To determine which interval is part of the solution set, we can use the graph or test an |x| value in each interval.

Note: Since the inequality symbol is |\ge,| the boundaries associated with |\boldsymbol{\color{#fa7921}{x_1}}| and |\boldsymbol{\color{#51b6c2}{x_2}}| are included in the solution set. Moreover, any boundary associated with an asymptote is always excluded.

Columns number
3 columns
Format
33% / 33% / 33%
First column
Corps

||\left]\boldsymbol{\color{#333fb1}{-\dfrac{3\pi}{4}}},\boldsymbol{\color{#fa7921}{-1.39}}\right]||Let’s test |x=-\dfrac{\pi}{2}.|||\begin{align}\tan^2\left(\dfrac{2x}{3}\right)&\ge\dfrac{16}{9}\\[3pt]\tan^2\left(\dfrac{2\times-\frac{\pi}{2}}{3}\right)&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]\tan^2\left(-\dfrac{\pi}{3}\right)&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt](-\sqrt{3})^2&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]3&\ge\dfrac{16}{9}\end{align}||This inequality is true, which means that the interval |\left]\boldsymbol{\color{#333fb1}{-\dfrac{3\pi}{4}}},\boldsymbol{\color{#fa7921}{-1.39}}\right]| is part of the solution set.

Second column
Corps

||[\boldsymbol{\color{#fa7921}{-1.39}},\boldsymbol{\color{#51b6c2}{1.39}}]||Let’s test |x=0.|||\begin{align}\tan^2\left(\dfrac{2x}{3}\right)&\ge\dfrac{16}{9}\\[3pt]\tan^2\left(\dfrac{2\times0}{3}\right)&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]\tan^2(0)&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]0^2&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]0&\color{#ec0000}{\not\ge}\dfrac{16}{9}\end{align}||This inequality is false, which means that the interval |[\boldsymbol{\color{#fa7921}{-1.39}},\boldsymbol{\color{#51b6c2}{1.39}}]| is not part of the solution set.

Third column
Corps

||\left[\boldsymbol{\color{#51b6c2}{1.39}},\boldsymbol{\color{#ec0000}{\dfrac{3\pi}{4}}}\right[||Let’s test |x=\dfrac{\pi}{2}.|||\begin{align}\tan^2\left(\dfrac{2x}{3}\right)&\ge\dfrac{16}{9}\\[3pt]\tan^2\left(\dfrac{2\times\frac{\pi}{2}}{3}\right)&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]\tan^2\left(\dfrac{\pi}{3}\right)&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]\sqrt{3}^2&\overset{\text{?}}{\ge}\dfrac{16}{9}\\[3pt]3&\ge\dfrac{16}{9}\end{align}||This inequality is true, which means that the interval |\left[\boldsymbol{\color{#51b6c2}{1.39}},\boldsymbol{\color{#ec0000}{\dfrac{3\pi}{4}}}\right[| is part of the solution set.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Since the boundaries of the interval repeat themselves in every period, the solution set of the inequality |\tan^2\left(\dfrac{2x}{3}\right)\ge\dfrac{16}{9}| is as follows:

||x\in\left]-\dfrac{3\pi}{4}+\dfrac{3\pi}{2}n,\,-1.39+\dfrac{3\pi}{2}n\right]\ \cup\ \left[1.39+\dfrac{3\pi}{2}n,\ \dfrac{3\pi}{4}+\dfrac{3\pi}{2}n\right[||where||n\in\mathbb{Z}||

Second column
Corps

We can use a technology tool to graph the 2nd degree tangent function. Drawing such a graph is not part of the high school curriculum.

Image
The graph representing the solution set of the inequality.
Title (level 2)
See Also
Title slug (identifier)
see-also
Contenu
Links
Remove audio playback
No
Printable tool
Off