Content code
p1047
Slug (identifier)
the-main-formulas-used-in-physics
Parent content
Grades
Secondary V
Topic
Physics
Tags
returning force
gravitational
spring returning constant
vergence
formula
formulas in physics
physics formulas
the acceleration
lenses
Content
Contenu
Links
Title (level 2)
Optical Formulas
Title slug (identifier)
optical-formulas
Contenu
Corps

The Equations of Curved Mirrors and Lenses

​|G=\displaystyle \frac {h_{i}}{h_{o}} = \frac {-d_{i}}{d_{o}} = \frac {-l_{f}}{l_{o}} = \frac {-l_{i}}{l_{f}}|
 
|\displaystyle \frac {1}{d_{o}} + \frac {1}{d_{i}} = \frac {1}{l_{f}}|
 
|{d_{i}} = {l_{i}} + {l_{f}}|
 
|{d_{o}} = {l_{o}} + {l_{f}}|
 
|{l_{i}} \times {l_{o}} = {l_{f}}^2|
|l_{f}|: focal length (or focal distance)
|d_{o}|: object-mirror distance
|d_{i}|: image-mirror distance
|l_{o}|: object-focus distance
|l_{i}|: distance image-focus
|h_{o}|: pitch of the object
|h_{i}|: height of the image
|R|: radius of curvature
​|R = 2 \times {l_{f}}| (only in curved mirrors)

 

Signs Convention for Mirrors

Measurement

Positive Sign

Negative Sign

Mirror-Image Distance

(|d_{i}|)
The image is real. The image is virtual.

Focal Length

(|l_{f}|)
The mirror is concave (convergent). The mirror is convex (divergent).
Magnification (|G|)
Image Height (|h_{i}|)
The image is upright. The image is upside down.

Signs Convention for Lenses

Measurement ​Positive Sign Negative Sign
Mirror-Image Distance (|d_{i}|) The image is real (on the opposite side of the lense to the object). The image is virtual (on the same side of the lense as the object).
Focal Length (|l_{f}|) The lense is convex (convergent). The lense is concave (divergent).
Magnification (|G|)
Image Height (|h_{i}|)
The image is upright. The image is upside down.

Refraction

Snell-Descartes Law of Refraction

​|n_{1}\times \sin \theta_{i} = n_{2}\times \sin\theta_{r}|

|n_{1}|: refractive index of environment 1
|\theta_{i}|: angle of incidence |(^{\circ})|
|n_{2}|: refractive index of environment 2
|\theta_{r}|: angle of refraction |(^{\circ})|

The Vergence of a Lense |(C)|

|C = \displaystyle \frac {1}{l_{f}}|

|C|: vergence of the lense |( \delta )|
|l_{f}|: focal length (or focal distance) in metres |\text {(m)}|

The Optician's Equation

|C = (n - 1) \times \displaystyle (\frac {1}{R_{1}} - \frac {1}{R_{2}})|

|C| : vergence of the lense |( \delta )|
|n| : refractive index of the lense
|R_{1}| : radius of curvature of the first curved surface encountered by the light in metres |\text {(m)}|
|R_{2}| : radius of curvature of the second curved surface encountered by the light in metres |\text {(m)}|

The Vergence of a Lense System

​|C_T=C_1+C_2+...+C_n|
|C_T| : total vergence |(\delta)|
|C_1|,|C_2|,|C_n|: individual vergence of each lense |(\delta)|
Title (level 2)
Mechanical Formulas
Title slug (identifier)
mechanical-formulas
Contenu
Corps

The Equations of Uniformly Accelerated Rectilinear Motion (UARM)

|v_{moy}=\displaystyle \frac{\triangle x}{\triangle t}|

|a=\displaystyle \frac{\triangle v}{\triangle t}|

|v_{f}=v_{i} + a \cdot {\triangle t}|

|\triangle x= \displaystyle \frac{(v_{i} + v_{f}) \cdot {\triangle t}}{2}|

|\triangle x= v_{i} \cdot \triangle t +\displaystyle \frac{1}{2} \cdot a \cdot {\triangle t}^{2}|

|{v_{f}}^2={v_{i}}^2+2 \cdot a \cdot \triangle x|
|\triangle x = x_{f} - x_{i}|: variation in position |\text {(m)}|
|v_{moy}|: average speed |\text {(m/s)}|
|v_{i}|: initial velocity |\text {(m/s)}|
|v_{f}|: final velocity |\text {(m/s)}|
|a|: acceleration |\text {(m/s}^2)|
|\triangle t = t_{f} - t_{i}|: time variation |\text {(s)}|

Kinematic

The Range

​|\text{Range} = \displaystyle \frac{v_i^2 \, sin\, 2 \theta _i}{g}|
|\text{Range}| : range |\text{(m)}|
|v_i| : initial velocity |\text{(m/s)}|
|\theta _i|: intinial angle from the horizontal |(^{\circ})|
|g|: gravitational acceleration |\text{(m/s}^2)|

Dynamic

Motion on an Inclined Plane

​|a = g \times \sin \theta|

 

|a|: acceleration |\text {(m/s}^2)|
|g|: gravitational acceleration |\text {(m/s}^2)|
|\theta|: angle of tilt |(^{\circ})|

Gravitational Acceleration |(g)|

​|\displaystyle g = \frac{G \cdot m}{r^{2}}|​

|g|: gravitational acceleration |\text {(m/s}^2)|
|G|: universal gravitation constant |\left(6.67 \times 10^{-11} \displaystyle \frac {\text {N} \cdot \text{m}^{2}}{\text{kg}^{2}}\right)|
|m|: mass of the celestial body |\text {(kg)}|
|r|: celestial body radius |\text {(m)}|

The Friction Force |(F_f)|

​|F_{f} = F_{m} - F_{R}|

|F_{f}|: friction force |\text {(N)}|
|F_{m}|: driving force |\text {(N)}|
|F_{R}|: resultant force |\text {(N)}|

|F_{f} = \mu \cdot F_{N}| |F_{f}|: friction force |\text {(N)}|
|\mu|: coefficient of friction
|F_{N}|: normal force |\text {(N)}|

Newton's Second Law

​|F_ {R} = m \times a|

 

|F_{R}|: resultant force |\text {(N)}|
|m|: mass |\text {(kg)}|
|a|: acceleration |\text {(m/s}^2)|

The Gravitational Force |(F_g)|

​|F_{g} = m \times g|

|F_{g}|: gravitational force |\text {(N)}|
|m|: mass |\text {(kg)}|
|g|: gravitational acceleration |\text {(m/s}^2)|

|\displaystyle F_{g} = \frac{G \cdot m_{1} \cdot m_{2}}{r^{2}}| |F_{g}|: force of attraction between celestial bodies |\text {(N)}|
|G|: universal gravitation constant |\left(6.67 \times 10^{-11} \displaystyle \frac {\text {N} \cdot \text{m}^{2}}{\text{kg}^{2}}\right)|
|m_{1}|: mass of the first object |\text {(kg)}|
|m_{2}|: mass of the second object |\text {(kg)}|
|r|: distance separating the two objects |\text {(m)}|

The Centripetal Acceleration |(a_c)| and the Centripetal Force |(F_c)|

​|a_{c} = \displaystyle \frac {v^{2}}{r}|

 

|a_{c}|: centripetal acceleration |\text {(m/s}^2)|
|v|: object's rotational speed |\text {(m/s})|
|r|: radius of the circle |\text {(m)}|
|F_{c} = m \times \displaystyle \frac {v^{2}}{r}| |F_{c}|: centripetal force |\text {(N)}|
|m|: mass |\text {(kg)}|
|v|: object's rotational speed |\text {(m/s)}|
|r|: radius of the circle |\text {(m)}|

 

Transformation of Energy

Work |(W)|

​|W = F \times \triangle x|

|W|: work |\text {(J)}|
|F|: force |\text {(N)}|
|\triangle x|: distance travelled |\text {(m)}|

Power |(P)|

​|P = \displaystyle \frac {W}{\triangle t}|​

|P|: mechanical power |\text {(W)}|
|W|: work |\text {(J)}|
|\triangle t|: variation in time |\text {(s)}|

Energy |(E)|

​|E_{p_{g}} = m \times g \times \triangle y|

|E_{p}|: gravitational potential energy |\text {(J)}|
|m|: mass |\text {(kg)}|
|g|: gravitational field intensity |\text {(m/s}^2)|
|\triangle y|: distance travelled (height) of the object |\text {(m)}|
|E_{p_{e}} = \displaystyle \frac {1}{2} \times k \times \triangle x^{2}| |E_{p_{e}}|: elastic potential energy |\text {(J)}|
|k|: returning spring constant |\text {(N/m)}|
|\triangle x|: distance travelled by the spring |\text {(m)}|
|E_{k} = \displaystyle \frac {1}{2} \times m \times v^{2}| |E_{k}|: kinetic energy |\text {(J)}|
|m|: mass of the object |\text {(kg)}|
|v|: velocity of the object |\text {(m/s)}|
|E_m = E_k + E_p| ​ |E_{m}|: mechanical energy |\text {(J)}|
|E_{p}|: potential energy |\text {(J)}|
|E_{k}|: kinetic energy |\text {(J)}|
 

Hooke's Law

 

​|F_{rappel} = - k \times \triangle x|
|F_{rappel}|: returning force |\text {(N)}|
|k|: spring constant |\text {(N/m)}|
|\triangle x|: spring deformation or compression |\text {(m)}|

The Spring Returning Constant of a Combination of Springs

In parallel:
|k_{eq} = k_1 + k_2|
In series:
|\displaystyle \frac {1}{k_{eq}} = \displaystyle \frac {1}{k_1} + \displaystyle \frac {1}{k_2}|
|k_{eq}| : equivalent returning spring constant |\text {(N/m)}|
|k_1|,|k_2| : returning spring constant of each spring |\text {(N/m)}|

 

Remove audio playback
No
Printable tool
Off