The Equations of Spherical Mirrors and Lenses
|M=\displaystyle \frac {h_{i}}{h_{o}} = \frac {-d_{i}}{d_{o}} = \frac {-l_{f}}{l_{o}} = \frac {-l_{i}}{f}|
|\displaystyle \frac {1}{d_{o}} + \frac {1}{d_{i}} = \frac {1}{f}|
|{d_{i}} = {l_{i}} + {f}|
|{d_{o}} = {l_{o}} + {f}|
|{l_{i}} \times {l_{o}} = {f}^2|
|
|f|: focal length (or focal distance)
|d_{o}|: object-mirror distance |d_{i}|: image-mirror distance |l_{o}|: object-focus distance |l_{i}|: distance image-focus |h_{o}|: pitch of the object |h_{i}|: height of the image |R|: radius of curvature |
|R = 2 \times {f}| | (only in spherical mirrors) |
Signs Convention for Mirrors
Measurement |
Positive Sign |
Negative Sign |
Mirror-Image Distance (|d_{i}|) |
The image is real. | The image is virtual. |
Focal Length (|f|) |
The mirror is concave (convergent). | The mirror is convex (divergent). |
Magnification (|M|)
Image Height (|h_{i}|)
|
The image is upright. | The image is upside down. |
Signs Convention for Lenses
Measurement | Positive Sign | Negative Sign |
Mirror-Image Distance (|d_{i}|) | The image is real (on the opposite side of the lense to the object). | The image is virtual (on the same side of the lense as the object). |
Focal Length (|f|) | The lense is convex (convergent). | The lense is concave (divergent). |
Magnification (|M|)
Image Height (|h_{i}|)
|
The image is upright. | The image is upside down. |
Refraction
|n_{1}\times \sin \theta_{i} = n_{2}\times \sin\theta_{r}| |
|n_{1}|: refractive index of environment 1 |
|
|P = \displaystyle \frac {1}{f}| |
|P|: optical power of the lense in dioptres |\delta| |
|
|P = (n - 1) \times \displaystyle (\frac {1}{R_{1}} - \frac {1}{R_{2}})| |
|P| : vergence of the lense |( \delta )| |
|
|P_T=P_1+P_2+...+P_n| |
|P_T| : total optical power |(\delta)|
|P_1|,|P_2|,|P_n|: individual optical power of each lense |(\delta)| |
The Equations of Uniformly Accelerated Rectilinear Motion (UARM)
|v_{average}=\displaystyle \frac{\Delta x}{\Delta t}| |a=\displaystyle \frac{\Delta v}{\Delta t}| |v_{f}=v_{i} + a \cdot {\Delta t}| |\Delta x= \displaystyle \frac{(v_{i} + v_{f}) \cdot {\Delta t}}{2}| |\Delta x= v_{i} \cdot \Delta t +\displaystyle \frac{1}{2} \cdot a \cdot {\Delta t}^{2}| |{v_{f}}^2={v_{i}}^2+2 \cdot a \cdot \Delta x| |
|\Delta x = x_{f} - x_{i}|: displacement |\text {(m)}| |v_{average}|: average velocity|\text {(m/s)}| |v_{i}|: initial velocity |\text {(m/s)}| |v_{f}|: final velocity |\text {(m/s)}| |a|: acceleration |\text {(m/s}^2)| |\Delta t = t_{f} - t_{i}|: time interval |\text {(s)}| |
Kinematic
The Range |
|\text{Range} = \displaystyle \frac{v_i^2 \, sin\, 2 \theta _i}{g}| |
|\text{Range}| : range |\text{(m)}|
|v_i| : initial velocity |\text{(m/s)}| |\theta _i|: intinial angle from the horizontal |(^{\circ})| |g|: gravitational acceleration |\text{(m/s}^2)| |
Dynamic
|
|a = g \times \sin \theta| |
|a|: acceleration |\text {(m/s}^2)| |
|\displaystyle g = \frac{G \cdot m}{r^{2}}| |
|g|: gravitational acceleration |\text {(m/s}^2)| |G|: universal gravitation constant |\left(6.67 \times 10^{-11} \displaystyle \frac {\text {N} \cdot \text{m}^{2}}{\text{kg}^{2}}\right)| |m|: mass of the celestial body |\text {(kg)}| |r|: celestial body radius |\text {(m)}| |
|
|F_{f} = F_{m} - F_{R}| |
|F_{f}|: force of friction |\text {(N)}| |
|
|F_{f} = \mu \cdot F_{N}| | |F_{f}|: force of friction |\text {(N)}| |\mu|: coefficient of friction |F_{N}|: normal force |\text {(N)}| |
|
|F_ {R} = m \times a| |
|F_{R}|: resultant force |\text {(N)}| |
|
|F_{g} = m \times g| |
|F_{g}|: gravitational force |\text {(N)}| |
|
|\displaystyle F_{g} = \frac{G \cdot m_{1} \cdot m_{2}}{r^{2}}| | |F_{g}|: force of attraction between celestial bodies |\text {(N)}| |G|: universal gravitation constant |\left(6.67 \times 10^{-11} \displaystyle \frac {\text {N} \cdot \text{m}^{2}}{\text{kg}^{2}}\right)| |m_{1}|: mass of the first object |\text {(kg)}| |m_{2}|: mass of the second object |\text {(kg)}| |r|: distance separating the two objects |\text {(m)}| |
|
The Centripetal Acceleration |(a_c)| and the Centripetal Force |(F_c)| |
|a_{c} = \displaystyle \frac {v^{2}}{r}|
|
|a_{c}|: centripetal acceleration |\text {(m/s}^2)| |v|: object's rotational speed |\text {(m/s})| |r|: radius of the circle |\text {(m)}| |
|F_{c} = m \times \displaystyle \frac {v^{2}}{r}| | |F_{c}|: centripetal force |\text {(N)}| |m|: mass |\text {(kg)}| |v|: object's rotational speed |\text {(m/s)}| |r|: radius of the circle |\text {(m)}| |
Transformation of Energy
|W = F \times \Delta x| |
|W|: work |\text {(J)}| |
|
|P = \displaystyle \frac {W}{\Delta t}| |
|P|: mechanical power |\text {(W)}| |W|: work |\text {(J)}| |\Delta t|: variation in time |\text {(s)}| |
|
|E_{pg} = m \times g \times \Delta y| |
|E_{pg}|: gravitational potential energy |\text {(J)}| |m|: mass |\text {(kg)}| |g|: gravitational field intensity |\text {(m/s}^2)| |\Delta y|: displacement (height) of the object |\text {(m)}| |
|
|E_{pe} = \displaystyle \frac {1}{2} \times k \times \Delta x^{2}| | |E_{pe}|: elastic potential energy |\text {(J)}| |k|: restoring spring constant |\text {(N/m)}| |\Delta x|: displacement |\text {(m)}| |
|
|E_{k} = \displaystyle \frac {1}{2} \times m \times v^{2}| | |E_{k}|: kinetic energy |\text {(J)}| |m|: mass of the object |\text {(kg)}| |v|: speed of the object |\text {(m/s)}| |
|
|E_m = E_k + E_p| | |E_{m}|: mechanical energy |\text {(J)}| |E_{p}|: potential energy |\text {(J)}| |E_{k}|: kinetic energy |\text {(J)}| |
|
|
|F_{r} = - k \times \Delta x| |
|F_{r}|: restoring force |\text {(N)}|
|k|: spring constant |\text {(N/m)}| |\Delta x|: spring ellongation or compression |\text {(m)}| |
The Restoring Spring Constant |
In parallel: |k_{eq} = k_1 + k_2| In series: |\displaystyle \frac {1}{k_{eq}} = \displaystyle \frac {1}{k_1} + \displaystyle \frac {1}{k_2}| |
|k_{eq}| : equivalent restoring spring constant |\text {(N/m)}|
|k_1|,|k_2| : restoring spring constant of each spring |\text {(N/m)}| |