Content code
m1560
Slug (identifier)
solving-problems-with-functions
Grades
Secondary IV
Secondary V
Topic
Mathematics
Tags
quadratic function
square root function
absolute value function
rational function
exponential function
logarithmic function
greatest integer function
Content
Contenu
Corps

This Crash Course focuses on problem-solving in relation to the functions studied in Secondary 4 and 5. There's also a review of each function and a summary exercise for a short refresher.

Contenu
Title
Things to Know Before You Start
Content
Corps

The problems covered in this Crash Course relate to the following functions: the quadratic function, the greatest integer function, the square root function, the absolute value function, the rational function, the exponential function and the logarithmic function.

You need to be able to graph and find the rule for all these functions. You must also be able to solve all these types of equations.

Image
Diagram showing 3 ways of representing a function: words, graph and rule.
Links
Title (level 2)
The Quadratic (2nd Degree) Polynomial Function
Title slug (identifier)
quadratic
Contenu
Contenu
Title
Key Takeaways
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Basic Quadratic Function

||f(x)=ax^2||

Second column
Corps

Transformed Quadratic Function

||f(x)=a(x-h)^2+k||where |(h,k)| are the coordinates of the vertex

Corps

Here are two examples of solving a quadratic equation in standard form:

Consider the function: |f(x)=3(x+7)^2-5|

  • Determine the value(s) of |x| when |f(x)=7.| ||\begin{aligned}f(x)&=3(x+7)^2-5\\7&=3(x+7)^2-5\\\color{#ec0000}{\sqrt{\color{black}{4}}}&=\color{#ec0000}{\sqrt{\color{black}{(x+7)^2}}}\\\pm2&=x+7\end{aligned}\\ \begin{aligned}\\-2&=x+7&2&=x+7\\-9&=x_1&-5&=x_2\end{aligned}||

  • Determine the value(s) of |x| when |f(x)=-8.| ||\begin{align}f(x)&=3(x+7)^2-5\\ -8&=3(x+7)^2-5\\-1&=(x+7)^2\quad \Rightarrow \text{impossible}\end{align}||The square of a number is always positive, but the number on the left of the equation is not a positive number. Therefore, you can stop solving since there is no solution when |f(x)=-8.|

If the equation was given in general form, set everything equal to zero: |ax^2+bx+c=0| and use the quadratic formula.

Contenu
Title
For More Help
Content
Columns number
3 columns
Format
33% / 33% / 33%
First column
Title
Concept Sheets
Links
Second column
Title
Videos
Links
Third column
Title
Exercises
Links
Title (level 2)
The Step Function (Greatest Integer Function)
Title slug (identifier)
step
Contenu
Contenu
Title
Key Takeaways
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Basic Step Function

||f(x) = a[bx]||

Second column
Corps

Transformed Step Function

||f(x) = a[b(x-h)]+k||where |(h,k)| corresponds to the coordinates of a closed point

Image
The role of parameters a and b in a step (greatest integer) function.
Corps

Here are two examples of solving greatest integer equations:

Consider the function: |f(x)=-2[8(x-3)]+1|

  • Determine the value of |x| when |f(x)=2.| ||\begin{align}f(x)&=-2[8(x-3)]+1\\ 2&=-2[8(x-3)]+1\\-\dfrac{1}{2}&=[8(x-3)]\quad \Rightarrow \text{impossible}\end{align}||Since the greatest integer is not a whole number, stop solving. There is no solution when |f(x)=2.|

  • Determine the value of |x| when |f(x)=-5.| ||\begin{gathered}\begin{aligned}f(x)&=-2[8(x-3)]+1\\-5&=-2[8(x-3)]+1\\3&=[8(x-3)]\end{aligned}\\\\\begin{alignat}{13}3&\leq8(x-3)&&<3+1\\\dfrac{3}{8}&\leq\ \ \,x-3&&<\dfrac{4}{8}\\\dfrac{3}{8}+3&\leq\quad\ x&&<\dfrac{1}{2}+3\\\dfrac{27}{8}&\leq\quad\ x&&<\dfrac{7}{2}\end{alignat}\\\\x\in\left[\dfrac{27}{8},\dfrac{7}{2}\right[\end{gathered}||

Contenu
Title
For More Help
Content
Columns number
3 columns
Format
33% / 33% / 33%
First column
Title
Concepts Sheets
Links
Second column
Title
Videos
Links
Third column
Title
Exercises
Links
Title (level 2)
The Square Root Function
Title slug (identifier)
square-root
Contenu
Contenu
Title
Key Takeaways
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Basic Square Root Function

||f(x)=a\sqrt{bx}||

Second column
Corps

Transformed Square Root Function

||f(x)=a\sqrt{b(x-h)}+k||where |(h,k)| are the coordinates of the vertex

Corps

Two key restrictions must be taken into consideration:

  • A square root is always greater than or equal to |0.|

  • The term under the square root, called the radicand, is always greater than or equal to |0.|

Here are 2 examples of solving a square root equation:

Consider the function:  |f(x)=-7\sqrt{-(x+1)}+4.|

  • Determine the value(s) of |x| when |f(x)=-2.| ||\begin{align}f(x)&=-7\sqrt{-(x+1)}+4\\-2&=-7\sqrt{-(x+1)}+4\\\left(\dfrac{6}{7}\right)^{\boldsymbol{\color{#ec0000}{2}}}&=\sqrt{-(x+1)}^{\boldsymbol{\color{#ec0000}{2}}}\\\dfrac{36}{49}&=-(x+1)\\-\dfrac{36}{49}&=x+1\\-\dfrac{85}{49}&=x\end{align}||

  • Determine the value(s) of |x| when |f(x)=6.| ||\begin{align}f(x)&=-7\sqrt{-(x+1)}+4\\6&=-7\sqrt{-(x+1)}+4\\-\dfrac{2}{7}&=\sqrt{-(x+1)}\quad\Rightarrow\text{impossible}\end{align}||Since the square root of a number cannot be negative, stop solving. There is no solution when |f(x)=6.|

Contenu
Title
For More Help
Content
Columns number
3 columns
Format
33% / 33% / 33%
First column
Title
Concept Sheets
Links
Second column
Title
Videos
Links
Third column
Title
Exercise
Links
Title (level 2)
The Absolute Value Function
Title slug (identifier)
absolute-value
Contenu
Contenu
Title
Key Takeaways
Content
Corps

Transformed Absolute Value Function

||f(x)=a\vert x-h\vert+k||where  |(h,k)| corresponds to the coordinates of the vertex

When an absolute value is isolated to one side of the equation, the algebraic expression or the number on the other side must be positive.||\vert x\vert=\underbrace{\dots}_{\ge\ 0}||

Here are two examples of solving an absolute value equation:

Consider the function: |f(x)=-0.6\vert x-3\vert -1|

  • Determine the value(s) of |x| when |f(x)=-10.| ||\begin{aligned}f(x)&=-0.6\vert x-3\vert -1\\-10&=-0.6\vert x-3\vert -1\\15&=\vert x-3\vert\end{aligned}\\\begin{aligned}\\15&=x-3&-15&=x-3\\18&=x_1&-12&=x_2\end{aligned}||The corresponding |x| values are |-12| and |18.|

  • Determine the value(s) of |x| when |f(x)=5.| ||\begin{align}f(x)&=-0.6\vert x-3\vert-1\\5&=-0.6\vert x-3\vert-1\\6&=-0.6\vert x-3\vert\\-10&=\vert x-3\vert\quad\Rightarrow\quad\text{impossible}\end{align}||Since the absolute value is equal to a negative number, stop solving. There is no solution when |f(x)=5.|

Contenu
Title
Fore More Help
Content
Columns number
2 columns
Format
50% / 50%
First column
Title
Concept Sheets
Links
Second column
Title
Videos
Links
Title (level 2)
The Rational Function
Title slug (identifier)
rational
Contenu
Contenu
Title
Key Takeaways
Content
Corps

There are 2 ways of writing the rule of a rational function.

Columns number
2 columns
Format
50% / 50%
First column
Corps

Standard form

||f(x)=\dfrac{a}{b(x-h)}+k||where
|x=h| is the equation of the vertical asymptote.
|y=k| is the equation of the horizontal asymptote.

Note: In most cases, the simplified standard form is used: ||f(x)=\dfrac{a}{x-h}+k||

Second column
Corps

General form

||f(x)=\dfrac{a_1x+b_1}{a_2x+b_2}||

Corps

In some problems, it is necessary to switch from one form to another.

To switch from standard to general form, write both terms over the same denominator and add the numerators.

Example: ||\begin{align}f(x)&=\dfrac{5}{x-3}+4\\&=\dfrac{5}{x-3}+\dfrac{4\boldsymbol{\color{#ec0000}{(x-3)}}}{1\boldsymbol{\color{#ec0000}{(x-3)}}}\\&=\dfrac{5}{x-3}+\dfrac{4x-12}{x-3}\\&=\dfrac{5+4x-12}{x-3}\\&=\dfrac{4x-7}{x-3}\end{align}||

To switch from general form to standard form, divide the numerator by the denominator.

Example: ||\begin{align}f(x)&=\dfrac{8x-15}{2x-6}\\\\&\quad\ \boldsymbol{\color{#333fb1}{4}}\\\boldsymbol{\color{#ff55c3}{2x-6}}\quad&\overline{\smash{\big)}\ \ \ 8x-15\ \,}\\&\underline{-\ (8x-24)}\\&\qquad\quad\ \boldsymbol{\color{#3a9a38}{9}}\phantom{)}\\\\f(x)&=\dfrac{\boldsymbol{\color{#3a9a38}{9}}}{\boldsymbol{\color{#ff55c3}{2x-6}}}+\boldsymbol{\color{#333fb1}{4}}\\&=\dfrac{9}{2(x-3)}+4\end{align}||

Here are two examples of solving a rational equation:

Consider the function: |f(x)=\dfrac{3}{x-4}+2.|

  • Determine the value of |x| when |f(x)=7.| ||\begin{align}f(x)&=\dfrac{3}{x-4}+2\\7&=\dfrac{3}{x-4}+2\\5&=\dfrac{3}{\boldsymbol{\color{#ec0000}{(x-4)}}}\\5\boldsymbol{\color{#ec0000}{(x-4)}}&=3\\5x-20&=3\\5x&=23\\x&=4.6\end{align}||

Consider the function: |f(x)=\dfrac{6x+21}{2x+8}.|

  • Determine the value of |x| when |f(x)=3.| ||\begin{align}f(x)&=\dfrac{6x+21}{2x+8}\\3&=\dfrac{6x+21}{\boldsymbol{\color{#ec0000}{2x+8}}}\\3\boldsymbol{\color{#ec0000}{(2x+8)}}&=6x+21\\6x+24&=6x+21\\24&\boldsymbol{\color{#ec0000}{=}}21\qquad\Rightarrow\text{False!}\end{align}||Since the result is a false equality, it means that there is no solution. |3| is the value of one of the asymptotes.

Contenu
Title
For More Help
Content
Columns number
2 columns
Format
50% / 50%
First column
Title
Concept Sheets
Links
Second column
Title
Videos
Links
Title (level 2)
The Exponential Function
Title slug (identifier)
exponential
Contenu
Contenu
Title
Key Takeaways
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Basic Exponential Function

||f(x)=a(c)^{bx}||where
|y=0| corresponds to the equation of the horizontal asymptote.
|a| corresponds to the initial value.

Second column
Corps

Transformed Exponential Function

||f(x)=a(c)^{b(x-h)}+k||where
|y=k| corresponds to the equation of the horizontal asymptote.
|a+k| corresponds to the initial value.

Note: Most of the time, the simplified standard form is used. ||f(x)=a(c)^x +k||

Corps
  • Parameter |c| corresponds to the multiplicative factor.

  • Parameter |b| represents the number of times the multiplicative factor is applied within a given period of time.

To switch from exponential form to logarithmic form, the following diagram can be used:

Image
Diagram showing how to switch from exponential to logarithmic form and vice versa.
Corps

Example: ||\boldsymbol{\color{#EC0000}{46}}=\boldsymbol{\color{#51B6C2}3^{\color{#3A9A38}{2x}}}\quad\Leftrightarrow\quad\boldsymbol{\color{#3A9A38}{2x}}=\log_\boldsymbol{\color{#51B6C2}3}\boldsymbol{\color{#EC0000}{46}}||

Here are two examples of solving exponential equations:

Consider the function: |f(x)=\dfrac{1}{8}(4)^x+5|

  • Determine the value(s) of |x| when |f(x)=13.| ||\begin{gather}\begin{aligned}f(x)&=\dfrac{1}{8}(4)^x+5\\13&=\dfrac{1}{8}(4)^x+5\\8&=\dfrac{1}{8}(4)^x\\\boldsymbol{\color{#EC0000}{64}}&=\boldsymbol{\color{#51B6C2}4^\color{#3A9A38}x}\end{aligned}\\\Updownarrow\\\begin{aligned}\boldsymbol{\color{#3A9A38}x}&=\log_{\boldsymbol{\color{#51B6C2}4}}\boldsymbol{\color{#EC0000}{64}}\\x&=3\end{aligned}\end{gather}||

  • Determine the value(s) of |x| when |f(x)=2.| ||\begin{gather}\begin{aligned}f(x)&=\dfrac{1}{8}(4)^x+5\\2&=\dfrac{1}{8}(4)^x+5\\-3&=\dfrac{1}{8}(4)^x\\\boldsymbol{\color{#EC0000}{-24}}&=\boldsymbol{\color{#51B6C2}4^\color{#3A9A38}x}\end{aligned}\\\Updownarrow\\\begin{aligned}\boldsymbol{\color{#3A9A38}x}&=\log_{\boldsymbol{\color{#51B6C2}4}}(\boldsymbol{\color{#EC0000}{-24}})\end{aligned}\end{gather}||Since the argument of a logarithm can never be less than |0,| there is no solution.

Contenu
Title
For More Help
Content
Columns number
3 columns
Format
33% / 33% / 33%
First column
Title
Concept Sheets
Links
Second column
Title
Videos
Links
Third column
Title
Exercises
Links
Title (level 2)
The Logarithmic Function
Title slug (identifier)
logarithmic
Contenu
Contenu
Title
Key Takeaways
Content
Columns number
2 columns
Format
50% / 50%
First column
Corps

Basic Logarithmic Function

||f(x)=a\log_c({bx})||where
|x=0| corresponds to the equation of the vertical asymptote.

Second column
Corps

Transformed Logarithmic Function

||f(x)=a\log_c\big({b(x-h})\big)+k||where 
|x=h| corresponds to the equation of the horizontal asymptote.

Note: Most of the time, the simplified standard form is used. ||f(x)=\log_c\big({b(x-h})\big)||

Corps

To switch from logarithmic form to exponential form, the following diagram can be used:

Image
Diagram showing how to switch from logarithmic to exponential form and vice versa.
Corps

Example: ||\boldsymbol{\color{#3A9A38}{10}}=\log_\boldsymbol{\color{#51B6C2}2}\boldsymbol{\color{#EC0000}x}\quad\Leftrightarrow\quad\boldsymbol{\color{#EC0000}x}=\boldsymbol{\color{#51B6C2}2^{\color{#3A9A38}{10}}}||The natural logarithm is a logarithm with a base value of |e.| The number |e| is an irrational number whose value is approximately |2.718\ 28...| ||\ln x=\log_e x||where ||e\approx 2.72||

Here is an example of solving logarithmic equations:

Consider the function:  |f(x)=-\log_{\frac{3}{2}}\left(\dfrac{1}{6}(x+3)\right)-2|

  • Determine the value(s) of |x| when |f(x)=-3.| ||\begin{gather}\begin{aligned}f(x)&=-\log_{\frac{3}{2}}\left(\dfrac{1}{6}(x+3)\right)-2\\-3&=-\log_{\frac{3}{2}}\left(\dfrac{1}{6}(x+3)\right)-2\\-1&=-\log_{\frac{3}{2}}\left(\dfrac{1}{6}(x+3)\right)\\\boldsymbol{\color{#3A9A38}1}&=\log_{\boldsymbol{\color{#51B6C2}{\frac{3}{2}}}}\left(\boldsymbol{\color{#EC0000}{\dfrac{1}{6}(x+3)}}\right)\end{aligned}\\\Updownarrow\\\begin{aligned}\boldsymbol{\color{#EC0000}{\dfrac{1}{6}(x+3)}}&=\left(\boldsymbol{\color{#51B6C2}{\frac{3}{2}}}\right)^{\boldsymbol{\color{#3A9A38}1}}\\x+3&=9\\x&=6\end{aligned}\end{gather}||

Contenu
Title
For More Help
Content
Columns number
3 columns
Format
33% / 33% / 33%
First column
Title
Concept Sheets
Links
Second column
Title
Videos
Links
Third column
Title
Exercises
Links
Remove audio playback
No